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FOOD FOR THOUGHT:
FIVE LECTURES ON LATTICE GAUGE THEORY

RAJAN GUPTAt

MS-B285, Theoretical Division
LLos Alamos National Laboratory
Los Alamos, N.M. 87545

ABSTRACT

The topics covered in these lectures are the heavy J¢ potential,
glueballs, the chiral transition with dynamical fermions, Weak interac-
tion matrix elements on the lattice and Monte Carlo renormalization
group. Even though for the most part these lectures are reviews, many
new results and ideas are also presented. The emphasis is a on critical
analysis of existing data, exposing bottlenecks and a discussion of open
problems.

* J. Robert (Oppenhesmer Fellow



INTRODUCTION

The comparison between QCD as the fundamental theory of strong
interactions and experiments has so far been hampered by our inability
to incorporate the low frequency modes in analytic calculations. Since
quarks and gluons are not observed as asymptotic states, even the most
energetic processes require an understanding of what is happening at
the length scale of confinement. Thus the problem of strong interac-
tions has to be addressed in a fundamental way. At present, the only
technique with promise is Monte Carlo simulations of Lattice regular-
ized QCD. As with any other calculation technique, the ingenuity lies ir
setting up the probiem. In these lectures [ will try to bring through the
flavor that these calculations require the same type of cleverness, insight
and analyticai skills as a good phenomenologist calculating multi-loop
Feynman diagrams. The execution of these calculations is following the
path of experiments.

The topics [ will cover are
'1] The heavy ¢g potential.
‘2] The glueball Spectrum.
‘3] QCD with dynamical fermions: The Chiral transition.
‘4] Weak Interaction Matrix Elements on the Lattice.
'5] Monte Carlo Renormalization Group.

The attempt is to make each lecture a self sufficient unit. The stvle
of the lectures is critical and probably terse. [ am allowed this liberty
duz to t1e excellent introductions by John Kogut and Mike Creutz. So,
[ will explore techniques, ideas and their virtues. The focus ~t all time
will be on physics goals and how to obtain hard numbers.

My original contributions to this set of lectures are a product
of many enjoyable collaborations. The support of Los Alamos, DOE
(MFE) and Pittsburgh Supercomputer Center in providing time for the
calculations is gratefully acknowledged. I thank Philiipe de Forcrand,
Greg Kilcup and Steve Sharpe for a critical reading and for many dis-
cussions, and Kim Maltman for helping me make the lectures readable.

These lectures are a result of T. D. Lee and Norman Christ's invi-
tation to participate in the Lattice Gauge Symposium/Workshop Usirg
Parallel Computers held in Beijing, 1987. To write them has lead to
many sleepless nights, mainly because [ wanted to emulate their style
of clarity and depth. I hope they find them as insightful as was my
journey into a wonderfu] land.



1) THE HEAVY ¢7§ POTENTIAL

The very attempt to construct a potential to describe the interac-
tion of quarks restricts our focus to heavy fermions. It is only when the
mass m is large that we can forrulate the bound state of a ¢7 system
as a non-relativistic problem, with binding energies calculable from a
potential via the Schrodinger equation. There exist two systems, char-
monium and bottomonium that are made up of heavy quarks. The
precision to which we car already measure their levels is shown in fig-
ure 1 [1]. Our goal is to derive a potential, check it against these levels,
and then with it predict the anticipated toponium spectra.

The lattice calculations are non-perturbative but the potential we
derive from them is “from first-principals” in a restricted sense only.
There are two reasons a) we ignore dynamical quarks and b) we have to
decide before hand what terms contribute to it. The lattice calculations
do not predict a functional form. We have to make a trial ansatz and
use the data from lattice calculations to fix the unknown parameters.
So, if this lecture shows a certain lack of rigor, and has a certain flavor
of phenomenology, do not be disappointed. As you will see, even with
the modelling it is non-trivial to extract a potential and in any case
this is the best option we have at the moment.

The discussion of the ¢§ potential is broken into two parts. |
will start with the spin-independent part of the pctential which is also
better understood.

1.1) Spin-Independent Potential: Phenomenology

General theoretical arguments provide the behavior of the spin
independent potential in the two extreme regions. At large separa-
tions (r — o0), confinement dominates and the physical picture is of
a “chromo-electric lux tube”. The potential V(r) behaves as a linear
function. of the distance:

V(ir) — or . (1.1)

A good estimate of the string tension derived from the Regge slope is
o~ (420 GeV)2.
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At the other end of the distance scale, 1.e. short distances, the
running coupling constant can be evaluated in perturbation theory. To
leading order it is

aa(qz) = a’(”'?)

1+ %?ya,(uz)lnﬁ;-

With increasing ¢? it becomes weak, with a zero at g2 = oo. This
property is called asymptotic freedom. In this weak coupling limit we
expect, the effective potential to approach the one gluon exchange result
(Coulomb potential)

(1.2)

V() — —gi’r_' (1.3)

where g— is the color factor and «a, is the QCD running coupling con-
stant.

A simple form for the full effective potential is to take a linear
combination, ar + %, parameterized by two independent constants a,b.
Physically, these constants represent the scales at which an individual
term begins to dominate. They can be fixed using the charmonium
or bottomonium spectrum. This logic is a simple motivation for the
Cornell potential [2]

V(r) = ——— + (0.427Gev)?r . (1.4)

The constants are determined by fitting to charmonium. The predic-
tions for bottomonium are pretty good.

Richardson (3| modified the perturbative running coupling con-
stant so that it has built into it a linear long distance part. This ansatz

restricts the number of free parameters .0 one. The potential is simple
in momentum space:

4 127 1
3 33~-2ny qln(l + &y)

Ve(g®) = (1.5)

Again fixing A from charmonium, V, does a good job on bottomonium
also.



The last potential I consider is a totally heretical solution proposed
by Martin [4]

Vin(r) = 5.82GeV r0:10¢ (1.6)

It too reproduces the data.

The three potentials are shown in figure 2 along with the mean
charge radius of the onium states. Do we have any chance of finding
the correct form when these tl.ree solutions, which are radically differ-
ent, work as well as they do? The answer to the question is very simple:
The range of r over which the potential has to te fixed to reproduce
the charmonium and bottomonium spectrum is r = 0.2 to 1 fermi. In
this interval the three potentials can be made to coincide by adjusting
a single parameter as shown in the figure. They begin to deviate at
r > 1 or < 0.1 fermi. The region r > 1 is the domain of light quarks,
and there a simple potential model is hard to justify even if it seems
to work at times. The only test of these potentials is toponium. For
a top quark mass = 50 GeV, the charge radius, wavefunction at the
origin and the binding energy are significantly diffcrent for the three
cases. Estimates by Gilman (5| are shown in Table 1. The predic-
tions for the three are very different. It should therefore be easy to
distinguish between these potentials and maybe even constrain che pa-
rameters, or suggest if new terms are required. For the time being, to
extract a potential from the lattice, we shall assume the form (r + 1).

Es (ris) Eis - Eis | W{0)s
Potential (GeV) | (fermi) (GeV) GeV3¥/?)
“Cornell 97.1 0.028 2.2 23.3
" Richardson 95.3 0.048 1.0 8.5
Martin 98.6 | 0.084 0.5 2.7

Table i: Characteristics of toponium states assuming a top quark mass
of 50 GeV for the three potentials discussed [5].

1.4
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Fig. 22 Comparison of the shape of the Cornell [2| (dotted curve),
Richardson (3| (solid curve), and Martin (4] (dash-dot curve) poten-
tials. Also shown are the mean radii of some charmonium and bot-
tomonium states.
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1.2) Extracting the Spin-Independent Potential from the Lattice

To fix the parameters of the simple (r + }) potential, I break up the
separation r between ¢g into three regions: 1) Confining, characterized
by the linear term at large r; 2) Perturbative, where the ¢ potential
with a running coupling constant is manifest and 3) intermediate r, for
which we don’t have a good handle. The attempt will be to work in a
given region and fix one or more parameters. Then we have fewer free
parameters when making fits in other regions. Now onto the lattice.

Let us for starters assume that we have at our disposal extremely
good data for arbitrarily large Wilson loops. Then to extract the spin
independent potential one defines

V(R) = —TJi_.ncJ,o%an(R,T) . (1.7)

A quick derivation of this potential is as follows: The term in the
action representing the interaction of a scalar charge with the gauge
field is [ j, AP. Let the current Ju be due to a heavy external charge
propagating in a closed loop, then the extra action is the path ordered
product of the gauge field along the loop, P [ A#dz,. This is exactly
what the expectation value of a Wilson loop measures. On the lattice
let this loop be planar R x T. Then the physical process described by
this loop can also be thought of as to create a ¢ pair, separate it by
distance R, propagate it for time T and let it annihilate. The extra
action for doing this is the potential energy x the time T for which the
potential acts. This leads to the definition in eqn. (1.7). To get the
physical potential we have to isolate lattice artifacts, like those caused
by sharp corners ete. Thus we need a functional form for V' to which
we fit the data. This is where one is forced to make some assumptions
about what terms contribute to V. Let me start with large r where
conflnement (linear, potential) dominates to first extract o.

1.6



1.2a) Wilson String Tension ow

If the potential contains a linear term, then ow is in principal
given by the Creutz ratio

ow = R,IIi‘l-I-l.oo x(R,T)
= lim ‘an(R,T)W(R— 1,T —1)
R,T oo W(R,T - 1)W(R -1,T)
(1.8)
or by
ow = Rl-imoo(VL(R) -Ve(R-1)) . (1.9)

In both methods, it is necessary to have correlated errors in the Wilson
loop expectation values for a good estimate. Otherwise a 1% error in
one of the loops would change ¢ by £0.01. Recall that at 3 = 6 the
value of ¢ is =~ 0.05.

How large should R and T be to extract the asymptotic value?
Since the finite temperature transition is a measure of the confinement
scale, it is natural to assume that the size of the loops necessary to
isolate o, at a given value of 3, is > Nf. We have very good estimates
for this scale §: £ =8at3 =6, x10at 3 =6.2, £ ~ 12 at 8 = 6.3
and 14 at 3 ~ 6.4 [6][7]. For larger J it is reasonable to use asymptotic
scaling to determine £. To convert this into physical units, I use the
cumulative lattice data at § = 6.0 for }, to get £ ~ 1 fermi, a very
reasonable value for when the linear term should predominate.

If we assume this is the correct length scale then what Wilson loop
data is adequate? At present, Phillipe De Forcrand (8| alone has good
statistics for up to 7 x 7 loops at § = 6.0 on a 16* lattice and 8 x 12 and
9x 10 loops at 3 == 6.3 on a 243 x 48 lattice (10,000 data sweeps). From
these, he extracts o = 0.046 and 0.0173 at 8 = 6.0 and 6.3 respectively.
There are no errors quoted by him on purpose because the systematic
errors are huge. Taking these numbers seriously, we find a violation of
asyniptotic scaling; the scale is still changing too fast.

[ would like to highlight the magnitude of systematic errors. I have
done an analysis of the global data and for illustration again pick de
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Forcrand’s data at 6/g% = 6.0. A fit using eqn(1.10) to all loops in the
range (3,3) to (7,7) gives o = 0.059. Also, x(6,6) = x(7,6) = 0.064.
Compare these numbers with 0.046 obtained by de Forcrand using a
fit to eqn(1.7) for r between 2 and 6 (a three parameter fit to 5 points
'"). Next let me indicate the rcle of statistical errors at this level of
sophistication. The 7 x 7 loop has 2% errors. This makes x(7,7) vary
between 0.051 and 0.094. I hope I have made the point. The bottom
line is that we may still have 50% errors in the determination of ¢ from
Wilson loops already at 6/g? = 6. The data and results at § = 6.3 on
a 243 x 48 lattice are reproduced from (8 in figures 3a and 3b.

The results which are at least 2s reliable as the above are compiled
in Table 2 along with the o; extracted from Polyakov loops as discussed
below. An analysis of the scaling of this data has been done by M.
Fukugita in his lectures.

& [ ow (9] ow [10] | o¢ [11] ow 8]
5.5 0.340(15)
5.6 0.279(9)
5.7 0.135(5)
5.8 0.111(3) 0.099(1)
5.9 0.061(2)
6.0 0.061(2) 0.042(3) 0.046
6.1 0.046*
6.2 0.036(2)*
6.3 0.0172

Table 2: The Wilson (ow) and 't Hooft (v;) string tension from Barkai
et al. [9], Otto et al. (10|, de Forcrand et al. [11] and de Forcrand (8].
The * against values indicates that the estimate is not asymptotic.
Note the systematic error when more than one group has extracted o
at the same coupling, and also the difference between ow and o;.
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1.2b) Does the Wilson Loop Data Support the Effective String
Picture?

An alteraative way to parameterize the lattice data in the large
r region is to assume a simple long distance picture of QCD; one of
chromo-electric flux confined to a tube. Under this assumption, one
can study the modes of a scalar gaussian string to derive what terms
contribute to V. It has been shown that such scalar string theories have
a roughening transition [12] arising from fluctuations p=rpendicular to
the plane of the loop. The leading behavior of a R x T Wilson loop is

—-inW(R,T) = oRT + p(R+T) + ¢

r T InR 1 = ne
— (d={Z_ bl _§ 1 _ J%L
( 2){24 7 + e 3 n=lln\1 e )}

(1.10)
The last term is universal and depends only on the number of transverse
dimensions (d ~ 2). The coefficients 0,p,c depend on ¢g. Again, to
extract 0 we need to know what region to trust this string picture
in. The answer is given by Alvarez [13] from a 1/d expansion of the
Nambu-Goto string:

2
V(R) = oR {1~ %}* (1.11)

where

r(d-2)  0.52
120 ~ o
is the lower bound on r. This gives T > R > 3 at § = 6. An analysis
of Wilson loop data within this framework was done by Flensburg and
Peterson {14]. They fit the then existing loop data in terms of eqn.
(1.10) and found reasonable consistency with the model independent
coefficients. Their work is still a good description of the status. [ show
their results in figure 4. The only relevant new numbers are froin de
Forcrand (8] for the coefficient of the 1 term. He gets ~ —0.34 at both
J = 6.0 and 6.3 which is to be compared with the predicted universal

R? = (1.12)
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of the perimeter term. c) 1/r term with a universal coefficient 7 /12.
d) InR term with a universal coefficient 1/2.

value =1 = —0.26. Clearly, more work needs to be done especially u
one wants to distinguish between various string models.

1.2¢) 't Hooft String Tenslon

The 't Hooft string tension is determined from the connected 2-
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point correlation function of the Pelyakov-Wilson line P [15]
[(r) = (PY(r) P(0)) = (P)* = Y cae™®"  (1.13)

where Eq = 0¢(L)L and L is the transverse size of the lattice.

In the last two years, most measurements of the string tension
have been made using Polyakov loop correlations and are usually sup-
plemented with the source method [16]. While the inequality o; < ow
is true, it is believed that equality holds for all # and not just in the
continuum limit [17]. The only data that supports equality is from de
Forcrand (8] at § = 6. t.e. 0y = 0.042 versus oy = 0.046. However, the
errors in the evaluation of ow are large as discussed above. So, this
question is not yet settled.

In Tatle 2, I have listed the published values of o, along the Wilson
axis. A remarkable feature of these calculations is the verification of
the universal finite volume term

n

o(o0) = o(L) + YAl (1.14)
with a large coefficient 3. The agreement is in much better shape than
the universal term in Wilson loops.

There is a depressing side to the method too. As 3 is increased,
the transverse dimensions have to be increased to preserve the signal
out to large r. It is not clear whether this alone will guarantee that the
signal extends to the same physical distance. In present calculations,
the rmaz to which the signal extends changes from 7 to 9 in going {rom
3 = 5.5 to 6.0. This is not fast enough. Also, the auto-correlations
grow significantly. So, to go beyond 3 = 6.1, new tricks will be needed.
[ discuss some in my talk on giueballs.

A second relevant point is tha. two such 't Hooft excitations can
have the quantum numbers of glueballs with energy 20L. Thus when

measuring glueball masses L should be selected so that 2¢L > m.
1.3) The Full Spin-Independent Potenti~l

The standard assumption made to extract a potential is that the
major contamination in V(r) from Wilson loop data comes from the

.12
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perimeter term. Thus one parameterizes V;, defined in eqn (1.7), as

Vi(R) = oR + p + % . (1.15)
The constant p is from the perimeter term in the loops and to get V (r)
we subtract p obtained from the fit. At this stage the potential V (r)
and the distance r are measured in lattice units. To convert them in
to physical units we need a nass scale. Let me call this m, which
could be /o or a hadron mass calculated at each value of the coupling.
Then, the data at different values of the coupling (with any action) can
be put on the same plot, ;‘:‘- versus rm. If scaling holds and the data
and fits are good, then all the points should fall on a single universal
curve. This is the physical potential. Note that by using m calculated
at corresponding couplings I do not rely on asymptotic scaling but just
on scaling.

The problem with existing data is that we do not know the scale m
very well for § > 6 as shown above by the string tension measurements.
One option is to use asymptotic scaling having determined m at one
reliable point. We know asymptotic scaling does not work for at least
B < 6.15 (see section 4 of my talk on MCRG). Second, the range of r
available so far at any given (3 is small. Flower and Otto {18] showed
that bLecause of this, and in spite of appearances, we don't have a
universal curve. In their data (shown in figure 5) too, the problem is
hidden by the fact that the distance scale over which the potential is
measured at any given coupling is small.

1.4) Comparing the Lattice and Phenomenological Potential

As [ have already stressed, both lattice and phenomenological po-
tentials have uncertainties. However, the phenomenological potential
is tuned to fit the spectrum, so it is meaningful to compare the lattice
and the Cornell potential. Thix is shown in figure 6.

The unambiguous statement for the present is that the lattice po-
tential does a very pocr job at short distances. Ia this a problem due to
the quenched approximation? One does not know. Certainly, we have

l.14
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Fig. 6: Comparnson of the Monte-Carlo determined potential with
the Cornel! potential The normalization 18 chosen to m. ke the two
agreeatr, o = 1.

to wait for the next generation of dedicated super computers to start
addressing these details.

To summarize, the lattice calcr'ations give the correct qualitative
picture of the spin-independent potential. However, the systematic and
statistical errors are large so quantitative comparison s not good At
this point it mught be appropriate to define our goal. Tn cover the
range of charmonium, bottomonium and toponium, we would like to
map the potenual from 002 to 1 fermu. Let us optimustically assume
that scaling begins at 8:g?> = 6 Then to achieve the goal we have to



measure V (r) for at least r = 10 all the way from 6/g% = 6 to =~ 7.4,
This is a Ierculean task without a breakthrough in algorithms. Let
the brave of heart proceed.

Calculating the expectation value of large Wilson loops (or the
correlation of two Polyakov lines) is central to extracting the potential.
The bottlenecks are 1) critical slowing down and 2) removing the short
distance fluctuations from the loops. I can only offer suggestions for
there is a desperate need for a breakthrough. To overcome the first
there are two proposals, fourier acceleration and multigrid. The sta-
tus of fourier accelerations is discussed by John Kogut in his lectures.
A proposal for a multigrid update algorithm is presented in
section 7 of my lecture on MCRG. These techniques are being tested.
For the second we need “fat” loops. Improved actions and DLR vari-
ance reduction techniques as applied today are some help but are too
limited to achieve the final goal.

1.5) The Spin-Dependent Potential

To go beyond the simple central potential for heavy quark systems,
it is natural to include spin-orbit and spin-spin interactions. This full
potential was first derived by Eichten and Feinberg as an expansion in

L It is reviewed in two excellent SLAC summer school lectures by

m
M. Peskin [19] and F. Gilman (5] and in this lecture I shall follow their
notation and recapitviate the parts pertinent to lattice calculations. In

exact analogy with the hydrogen atom, the spin-dependent potential is

S, L Sy -Lir~-dv(r dv, (r
i = [+ ] 2

2my rdr
+ (§1 + §2) ‘ E dVg(r)
mima rdr (1.16)
1 Y 2 3\ 1y
+ 3m‘m2(35| v $S3  F — 51 Sg) Va(r)
2 . o=
- 1%
+ 3m|mgsl Sa V()
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where V (r) is the spin independent term we have already discussed.
The terms V,,V;, and V3 are spin-orbit interactions while Vi is the hy-
perfine interaction. To relate these to quantities that can be calculated
on the lattice, we start with the extra action in the path integral due
to a heavy external source with spin. This is

/A,‘J“ +% /z,“,F"“ (1.17)
where £,, = -"2—“['7,.,*7,,] is the spin operator. In the non-relativistic
limit, eqn (1.17) is

g - — -
VI + — - (B-FE). 1.18
/ L [s.(8-8) (1.18)

The functional integral (expzctation value) we wish to perform is in
presence of these extra terms. The first term defines an external current
source which is our old familiar Wilson loop. We treat the second term
in eqn(1.18) as a perturbation i.e. an expansion in L. Note that the E
or B fields that are brought down by expanding the exponential can be
anywhere along the world line of the quark or anti-quark. This will give
rise to integrals over the ¢t part of the loops since the spatial = arts of the
loop correspond to instantaneous separation. There are two types of
terms that can be generated; 1) that comes from a straight expansion
of which the only non-zero term (to lowest order) is due to the magnetic
field of the ¢ interacting with that of . This is the third term below.
2) The interaction of one & - B with the velacity operator of either the
q or the §. This gives the first two terms below:

dv, ~T/3 ti~ts_ g*(Ei(0,t:)B;(0,ts))
rk—;--r_,wT//,/, dhdts == TR T))

dVy _ /3 ty—ta_ g3(E\(0,¢1)B,(R,t2))
Ph-aT—TlLIPwT//T“ dt,dt; 3 €4k W(R.T))

1 1
(F.‘F,‘ - 56,’,’)‘/3 + —6(,V4 =

. T/3 t, - t; ¢*(B,(0,,)B,(R,t3))
r"-mooT//T,, dtrdty = W(R.T))

(1.19)

L.17



where for example E.-(d, t1) is an insertion of an eiectric field at location
(6,t1). To lowest order in the lattice spacing a, the fields are defined
by

Uso = Uy = 21ga®F,, (1.20)

where U, is the untraced plaquette in the (4, v) piane. An e<ample of
the insertions for the first two terms is shown in figure 7. The division
by W(R,T) removes the contribution of the spir-independent potential
to the extra action, leaving only the spin-dependent part.

g(r,1) g(fa,f)

—\

X E(r,t') Elr,t')
L/ | | J
-2

L T

(a) (b)

Fig. 7: Examples of insertions of plaquettes in Wilson loops that
contribute to the evaluation of spin-orbit potentials. a) V: and b) V3.

The first computational task then is to formulate these insertions
on the lattice. This is not unique and at finite 3 the arbitrariness
will have important consequences for the normalization of the V, in
addition to the practical concern of the statistical signal. Secondly,
these insertions on the lattice will themselves consist of small loops.
Thus different insertions will have different small R behavior. In figure
8, | give an example of a B field insertion. There are four possible
plaquettes attached to a given point ¥ defining the field at

B(F+ 552, B(F+ 225, B(F+ Z25), B(F- 557) (12




Fach of them individually is an insertin. A better solution is the sum.
This has two advantages, it improves the statistical signal and second
it is the average field defined at r.

| 1 T
c(3-2-2,  olkg-g)
L -/ ‘ 2 i
Y |
|
!
I o C
i |
\ | \
i AT |
| ' - I
| e {
¢ ) E\i\h_"f_: %)

Fig. 8: A B(r) field insertion defined as an average of four plaquettes
to improve the statisticai signal.

The first physics question is whether all the spin-dependent inter-
actions are short ranged. Michael and Rakow [20](21] showed by lattice
calculations that the tensor (V3) and the spir-spin (V) terms are short
ranged. This was soon confirmel for SU(3) by de Forcrand and Stack
'22] who also found that V; was short ranged. Their result for V| is
wrong due to an oversight. Phenomenological analysis of the heavy-
quark spectra indicates a need for a long range spin-orbit component
123]. More important, Gromes (24|, using simple Lorentz invariance,
derived the identity

Vir) = =Vi(r) + Va(r) (1.22)

Thus, the question now reduces to determiring which of the two, V; or
V, is long range. The answer for SU(2), provided by Michael (25|, is
V1. The result was confirmed for SU(3) by Campostrini, Moriarty and
Rebbi (26| (27]. Their data for the force, dV/dr, taken on a 16° x 32
lattice at = 6.0 and 6.2, are reproduced in figure 9. The normalization
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Fig. 9&: Spin-dependent Potential [26]. a) 4+ converted to physical
units using asymptotic scaling including a renormalization discussed
by the authors. The squares and triangles represent data at 7 = 6.0
and 6.2 respectively.
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represent data at § = 6.0 (circles) and 6.2 (crosses) after a correction
for lattice artifacts at small distances. The lines represent the lowest
order perturbative behavior, eqn. (1.23), with a, = 0.244 (solid line)
and a, = 0.175 (broken line).

1.21



60
|
-

30

(23

V. (Gev?)

10

00 ¢ 04 08 08
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of V, is fixed by using Gromes relation for large r

v, dv

& ar °

where o is determined from the spin independent potential. The data
are converted to physical units using asymptotic scaling.

The data show a clear distinction between the long range term V),
and the short-range pieces V3, V3, and V. Also evident is the problem
at small r due to the discreteness of the lattice. The lattice artifacts
give large differences between different definitions of the insertions. The
raw lattice data does not explain tlie observed spin splittings and they
provide phenomenological arguments which change things in the right
direction. For a discussion of these I refer you to their paper (26|.
The data for V3, V3 and V agrees qualitatively with the leading order
perturbative behavior

4
Vg(f) = --':-3- ?
Vg(f‘) = 4 %
3
V4(r) = 2V Vg(f) = —3'2—"' a, 63(')

(1.23)
though at r where the lattice artifacts are small, the fits are not very
sensitive since the signal for the short range potentials has large errors

Let me describe some computational tricks which were also used
in '27). For each measurement they fixed the lattice to the temporal
gauge. Then 1) ! parts of the loops do not have to be calculated. 2)
They use the DLR variance reduction trick for the spatial links. 3) They
average the insertions over t betore calculating the expectation values
1.e. do the T integral before the Monte Carlo average. This reduces the
statistical errors but also hides any T truncation effects that may exist.
de Forcrand informs me that these in fact are substantial especially for
the long range piece. For V; alone they are under control, as shown in
figure 10 where the integrand in eqn (1.19) is plotted directly.
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Fig. 10: The integrand £ x B versus t at r = 22 on a 243 x 48
lattice at 3 = 6.3 {8|. The solid line is the leading order perturbation
theory prediction.



The final goal is to be able to compute the spectroscopy of heavy
quarks from the lattice derived potential. Over and above statistical
and systematic errors, the problems facing the extraction of the spin-
dependent potential at the moment are 1) the normalization factors
for the various terms and their scaling with 4 and 2) the need for
large loops measured at weaker coupling so that the small r distortions
are pushed to small physical r. 3) The small r behavior is expected
to be modified by the presence of dynamical quarks and we need to
understand it better.

To conclude, I believe that the qualitative prediction that V, is
long ranged is a major triumph of lattice calculations.
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2) GLUEBALLS

The existence of glueballs are a major untested prediction of QCD.
We have not been able to reliably calculate the masses (let alone the
mixing with ¢ states), or understand in detail the production and de-
cay mechanisms. What we can do is group theory and determine, if
QCD is the correct theory, the quantum numbers of the vast number
of glueball states. The predictions for the masses from various models
(bag models, flux tube model, sum rules etc.) were compiled by Sharpe
(1] in 1984 and are summarized in figure 1. There has been no signifi-
cant improvement in these estimates and even today they ..re all over
the map. This does nct help the experimentalists who have to isolate
glueball states from the myriad of meson states in the 1 to 2.5 GeV
region. Future progress will depend on a combined effort: theorists
have to calculate the mass spectrum and understand the production
and decay mechanisms, while experimentalists must do very high pre-
cision measuren:ents. Clearly, the first goal facing Lattice alchemists is
to calculate the spectrum in a world in which the mixing with quark
states is turned off.

Experimental Status:

Let me first look at the problem donning the hat of an experimen-
talist. A good place to look for the lowest mass candidates is certainly
in the radiative decays of J/y

J/b = 199 «1X with X — gg.
The production of glueballs in hadron collisions is not very well under.
stood. Improved understanding will presumably come with input from
the decay modes of glueballs. So for starters let's proceed by elimina-
tion. First we tabulate all the states in the 1 — 2.5 GeV region and fill
up meson nonets since flavor SU(3) tells us that oace one member ex-
ists, all exist. If we are lucky, only filled (and well understood) nonets
and a single glueball candidate will exist. To be convinced that it is
not the first member of the next higher excited nonet, we rust check
that it has the “right” pronerties. A reasonable hypothesis is that its
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Fig. 1: Glueball mass predictions [1|: Bl and B2 are bag model
estimates; F'T is from flux tube; MG is from massive gluon model; and
S R is sum rules estimate.

decays should be flavor symmetric since a glueball state s..ould have
equal coupling to u, d, s quarks above threshold. In fact, this is violated
by one of the favorite candidates; the f3(1720) has a = 70 % branch-
ing ratio for decay into KX. Second, it should not be produced in
v+ scattering. Flavor singlet mesons, on the other hand, should have a
significantly larger branching ratio through v4. On the basis of such an
analysis we must further convince ourselves that the candidate state is
not a ¢ or a more exotic possibility like qJg or ¢?°F*. We then sanctify
it and start the laborious process of providing proof.

Candidates:

There exist at present two prime gluaball candidates below 2 GeV
and a possibie signal in the s-wave »x phase shift data for the elu-



2.1) Lattice Calculations of the Glueball Spectrum

The mass of any state in Euclidian lattice calculations is deter-
mined from the exponential fall-off of the connected 2-point correlation
function. Let O be any interpolating field operator with the coirect
quantum numbers. Then

[(r) = (O(r)0(0)) — (0)* = Y cae™™a" (2.1)

where the sum is over all states that couple to O. To get the best esti-
mate for the lowest state we need to 1) optimize O to get a large overlap
with the wave function by making ¢, large and the rest small, and 2)
have the signal extend for large 7 to kill any remaining contamination
of higher states. I will refer to these as necessary criteria.

The first calculations of the glueball spectrum were made by an-
alyzing the behavior of the 2-point correlation function of the 1 x 1
plaquette. [n this approach, the maximum separation 7 that could be
measured was < 2. Estimates of mass from these calculations were
dominated by higher excitations. Further, as g is decreased, the over-
lap of the plaquette operator with the physical glueball state also de-
creases, and the correlation function at small 7 is dominated by spin
waves. Thus, even for the 0" *state (which has the best signal), this
brute force approack did not and will not work.

To incorporate the growing size (in lattice units) of the glueball,
Wilson suggested we use the variational method. In this approach, the
glueball operator is taken to be

O = Y ¢a0a (2.2)

where O, are in principal all possible Wilson loops and ¢, are the
variational coefficients to be determined. This method is one way to
implement the necessary criterion one. The method works as follows:
The ¢, are determined at time separation r = 1 by solving a general-
ized eigenvalue problem; Ay = ABy, where A and B are the 2-point

re
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sive 0t*+, A lot more high statistics data with spin-parity analysis is
necessary to establish them.

(i] The (0**) state at ? Mev: This state is not seen directly. The

2|

3

evidence for and against comes from an analysis of the I=0, s-
wave mr phase shift 6J. By a study of the data below the KK
threshold, Sharpe, Jaffe and Pennington (2| «xcinde a gluebali un-
less it is very narrow ([ < 2MeV) or intrinsically very broad,
of mass ~ 650 MeV and appearing very narrow because of mix-
ing with ¢332 through unitarity. Recently, Au, Morgan and Pen-
nington (3| made a coupled channel analysis of the data for &)
obtained from pp — pprr(KK) up to 1.6 GeV. They conclude
that there is a glueball candidate state at 981 MeV. The anal-
ysis uses a highly complex seven pole solution to fit four reso-
nances! So one could be a little doubtful of it. Well, this is the
only serious number we have. The corresponding meson nonet is
(K3(1350), ao(980), fo(975), fo(1300) ). A pi blem for lattice
calculations, for which this channel is the most casily measured, is
mixing with meson states. There is no argument to exclude a large
mixing because of the trace anomaly [4|. Thus any prediction from
quenched calculations can be off by say 500 MeV.

The n(1460) or the old ¢(0~*): There is evidence for three states
in a narrow energy region; botha0~* — gor andal*" — KK*
meson at =~ 1420 seen in hadron collisions and a wider 0=* —
“ao” 7 at 1460 seen in radiative J/i decays. This region needs to
be sorted out by very high statistics runs.

The f3(1720) or the old §(2++) state: The 2"* meson nonet
(K3(1428), a2(1320), f3(1270), f2(1525) ) is complete, well estab-
lished and reasonably well understood. The f3{1720) is produced
copiously in J/i decay. It is at present the best glueball candidate
even though a v 70% decay into KK violates fiavor symmetry. If
the 2*+state is & relatively pure glueball stata then lattice calcula-
tions have another prediction. The mass ratio :{2‘{--:—sh0uld specify
the location of an unmixed 0*+, giving us ar es’timate of the size
of the mixing in the 0* *channel.

ro
[



correlation matrices I'(1) and ['(0) respectively. Then with O defined
by these coefficients, the best estimate for the mass is given by

L(r+1)

m = -—in )

(2.3)

where 7 + 1 is the largest separation at which a statistically significant

signal exists. Notwithstanding the fact that this method is mostly used

half-heartedly (a single loop with the best signal is chosen rather than
solving the generalized eigenvalue problem), it is clear that a few loops
are not suilicient and supplementary tricks are needed.

A second embellishment, duz to Parisi, replaces non-overlanping
links in large planar loops with the mean in a fixed environmenti.e.U —
U [5). Using these “DLR variance reduced loops”, bought us at best
one additional time-slice in the correlation function. Unfortunately, the
mass estimate so obtained was not independent of r and the magnitude
of the error was not known.

[ would summarize the status of glueball calculations up to 1985 as
one of exploring techniques. We had learnt how to construct operators
of various spin and parity using the cubic group and the rudiments of
such glueball calculations. For hard numbers we had nothing reliable
even for the O**state. For all other states, there was essentially no
signal. For details and references I suggest the review by Berg (6.

But what had we learned from these calculations? With 20/20
hindsight, [ can say the following:

(1] The short distance fluctuations in Wilson loops are killing the sig-
nal. Tt is necessary to use renormalized operators. One way to do
this is through the Monte Carlo Renormalization Group. This pro-
gram, first espoused by Wilson, has not been carried through for
fear of the computer time required. The DLR variance reduction
technique does not work well at small g because in the modified
Wilson loops the averaging is too local.

(2] The glueballs are not local objects, but most likely are spread
out over a complete time slice. Thus any attempt at a variational
calculation will need too many loops and even given sufficient loops

[ 5]
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the calculation will not address the issue that these loops are thin
(unrenormalized).

[3] A source is needed to enhance the signal at large time separations.

I will now briefly describe the ideas proposed and tried to overcome the
above problems

2.2) Technical Points

a) Finite Size Scaling

Lattice calculations will always require extrapolation of results cal-

culated on finite lattices to the infinite volume limit. In certain models
and under certain assumptions finite size scaling relations can be pre-
scribed. They are not “truths”, but should be used as phenomenologi-
cal guides until verified.

[1] For the string tension calculated from correlations of Polyakov-

(2]

Wilson lines, the finite size scaling form suggested by integration
of string fluctuation modes is (7|,

(L) = o(c0) — 5% +0(L™3). (2.4)

where L is the transverse size of the lattice.

The glueball data can be checked against the finite size scaling
form (8]

3 A 1
161r(m(oo)) m(oo) L

cp(-Lm(oo)L)(1 + OL )] (25)

m(L) = m(a0)[1-

where aggg = T'g?'(F(%T)z is the three scalar glueball coupling
constant. This relation is derived under the assumption that finite
volume effects come from multigluon interactions and that aggg
is srrall.  As I will show later, the finite size errors in glueball
measurements seem to be much too large for eqn. (2.5) to be valid.

(35
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Thus, we need very careful runs at one value.of the coupling for

many L to get a phenomenological understanding of these effects.
Otherwise we will have no predictions.

b) Sources for Glueballs

A simple calculation of the mass from a connected 2-point corre-
lation function picks out of the statistical sample those configurations
with a gluebail in them. These glueballs are created as fluctuations
of the QCD vacuum, and so are damped by their Boltzmann factor.
Thus the measurements are inefficient. With an external source at time
r = 0, the system near 7 = 0 is no longer in the vacuum state. Unlike
vacuum fluctuations, the source is strongly coupled to many different
states, exciting large number of quanta of each. The time evolution of
these states is still given by the unperturbed transfer matrix. Thus,
a given excitation with energy E, will die out as e~%=7, Far from
the source we then make the standard assumption that only the lowest
state of given quantum numbers survives. The mass is then measured
from an exponential fit to the decay of the operator s.e.

(O(r)) = (0O) ~ ece™™ (2.6)

where (O) is the vacuum expectation value measured at r — oo. In
figure 2, [ show a typical fit 9].

The simplest source for measuring mo++ and o is to set all spatial
links at r = O to the identity. The present status of the signal with
such a source is that with 50000 sweeps one can follow the signal out
tor = 9at6/g3 6.0 ona 10 spatial size lattice. Thereafter one has
the usual bottleneck; the errors fail as VLV’ where /N is the number of
independent configurations. The DLR variance reduction technique is
not applicable in the presence of the source, but smeared operators (to
be discussed later) should be used. Also, these calculations should be
supplemented by the variational method. At present no good source is
known for the 2+ *state.
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Fig. 2: A typical fit to the response of Polyakov loop operator,
(P(r)), to a cold wall source with periodic boundary conditions [9).
The exponent at large r, in the exponential fall-off, gives the string
tension.

¢) Variational method in presence of a source

The standard variational method to estimate the wavefunction ¥
by solving the equation [9)

(9.‘(1’)9,‘(1’ + 1))‘,\",' = A(G.‘(T)e,(f))cwj' (2.7)

for the lowest eigenvalue can also be used in the presence of 2 source.
The ©,(r) are the various loops (they could be blocked or smeared loops
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to be defined later) measured on time slice 7. Eqn. (2.7) follows from
the same assumption as in eqn (2.6), t.e. at time slice t the eigenstates
of the transfer matrix are simple and ordered and the lowest state
dominates the exponential fall off. A check that the solution ¥ is not
dominated by the source is that the resuits be stable at a few successive
time 'ices.

2.3) Large Lattice, High Statistics Results

The story of these calculations changed with the availability of
Supercomputers. In this lecture I will focus only on this large lattice
data, which is collected in table 1 and figure 3

de Forcrand et al. did the first large scale calculation with a source
for the 0" *state [10] and the string tension [11]. The source they used
was to fix all space-like links 2t time-slice zero to the identity. The
string tension was determined from a measurement of the Polyakov-
Wilson line while the glueball mass was determined from the 2 x 2
Wilson loop. They determined the value for the ratio —ﬂ,‘-*— to be
1.96(7), 2.45(12) and 2.65(18) at the three values of the couplmg along
the Wilson axis taken to be 6/g?= 5.5, 5.7 and 5.9. (These ratios
are slightly different from those in Table 1 because here | have quoted
their infinite volume extrapolations for 0**). These results show scal-
ing violations. It is therefore not possible to deduce the continuum
value. Their second result is that calculations on different spatial size
lattices are in very good agreement with the presence of the universal
Luscher finite size correction to the string tension, i.e. y7r- A third
(even though negative) result of their calculation is that simple sources
for the 2+* state don't work as well. Lastly, their calculations sug-
gest that even with the source, the method saturates at 6/¢? ~ 6.0
because the number of points remaining are not sufficient to fit to a
reliable exponential. This is after the initial time-slices dominated by
the transients are discarded.

The improved action calculation [9] was motivated by an under-

standing of the cause of scaling violations in the calculations of de
Forcrand et a/. and the existence of a MCRG inspired method to avoid
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( # K, Lattice [ o(lL)L 1/0((X)) mG(L) m..-( L)

r 1 9.2 6 x 21 0.76(5) | 0.395(25) | 0.91(10) 2.3(3)
2 9.9 63 x 21 0.32(1) | 0.287(12) | 0.79(11) 2.8(4)
3 9.9 9% x 21 0.63(2) | 0.288(10) 0.89(8) 3.1(3)
4 10.5 9% x 21 0.38(1) | 0.235(14) 0.67(6) 3.0(3)
[3 105 12° x 21 0.57(3) | 0.234(28) 0.64(7) 2.8(4)
6 55 6% x 12 1.86(6) 0.58(1) 1.07(3) 1.84(6)
7 5.7 63 x 16 0.63(2) 0.37(1) 0.66(4) 1.8(1)
8 5.7 87 x 16 0.94(3) 0.37(1) 0.86(4) 2.3(1)
9 59 89 x20 | 0.33(1) 0.24(1) 0.73(14) | 3.0(6)
10 59 10° x 20 | 0.52(1) 0.25(1) 0.68(8) 2.7(4)

11 59 122 x 20 | 0.65(3) 0.25(1) 0.74(7) 3.9(3)
12 6.0 10° x 20 | 0.41(3) 0.21(1) - -
13 5.9 10° x 32 | 0.48(3) 0.24(3) 0.65(3) 2.7(2)
14 5.9 12° x 32 | 0.66{1) 0.25(1) 0.76(4) 3.05(2)
15 59 1£% x 32 | 0.86(3) 0.24(2) 0.82(5) 3.4(3)
16 6.0 13% x 18 - - 0.65(8) -
17 6.05 13% x 18 - - 0.66(7) -
18 6.1 13% x 18 - - 0.64(10) -

Table 1 : Monte Carlo data for the 0* * glueball mass and the string tension 0. The first

5 en'ries are for the improved action, (eqn. (2.8)), calculations {9,21]. Entries 6 to 12 are
from de Forcrand et al [10,15], 13 to 15 are from the APE collaboration |20} and 16 to 18
are from DeGrand [18]. All of these correspond to coupling along the Wilson axis.



them. The reason for the scaling violations is a lattice artifact: the lat-
tice theory possesses extraneous critical points in the vicinity of which
the universality of the ¢ — O theory is violated. One such known critical
point is present in the fundamental-adjoint plane and lies close to the
Wilson axis. A naive extrapolation of the specific heat data suggests
that its maximum influence along the Wilson axis will be at 6/g% = 5.5.
At this critical point the 0**glueball mass vanishes. This is based on
the specific heat data [12) and a measurement of O**state, in SU(2),
close to the critical point [13]. On the other hand the string tension
remains finite [14]. This explanation is consistent with de Forcrand et
al. data. To avoid this singularity we chose a linear trajectory in a four
coupling space consisting of the plaquette in the fundamental, 8 and 6
representations as well as the 1 x 2 rectangle in the proportion :

::—l=—o.12, 51:—0.12. Kixa

r Kr Kr

= —.04, (2.8)

when the traces are normalized to unity. This trajectory is a MCRG
estimate of the renormalized trajectory (RT) in this truncated s; 1ce.
Since the RT in principle preserves the mass-ratios of the continuum
theory, working along it is a way of avoiding lattice artifacta. The
second motivation has to do with using renormalized block operators.
There are two ways to do this. One is to generate lattices with any
action, block a reasonable number of times and calculate observables
on these blocked lattices. This approach has a problem for QCD. The
correlation length £ for most observables (proton, rho, glueballs ete.)
on the largest lattices accessible to todays suparcomputers are at best
a few lattice spacings. Thus »ny blocking makes § < 1. Since all BST
are approximatd, there is no guarantee that the flow from a starting
action will be attracted to the weak coupling RT for such small £
The alternative is to work along the RT. The price one pays is a more
complicated action in the update. Howaever, in this case we can simulate
in a reglon where £ > 1 and thus satiafy a basic requirement of lattice
calculations. The million dollar question (literally) is how elaborate
does the action have to be such that the simple operators with improved
actions are equivalent to the renormalized ones obtained by blocking



configurations generated with a simple action. We decided to test the
4-parameter action given in eqn(2.8), and the results are entries 1 to 5
in table 1.

The new result 1s :3-;-°—= 3.0(3). We again confirm the Lischer
term s7r but find much smaller finite size corrections for the glueball
than de Forcrand et al. [10]. To later compare results from improved
actions with those with the Wilson action, let me define 3./, as the
coupling on the Wilson axis which gives the same string tension as a
given improved action calculation.

Last October, de Forcrand analyzed data from more extensive cal-
culations at 3 = 5.9 on L = 8,10,12 lattices [15]. His new result is
:3-.;—‘-:: 3, in agreement with the improved action calculation. This
immediately raises *the question, how much better is the improved ac-
tion? [ will discuss this in the conclusions. Second. in his results, the
finite size effects for glueballs do not show a monotonic growth with
L, so we cannot use Luscher's reault, eqn (2.5). Again, [ will have
more to say about the finite size effects after discussing how to improve
operators.

Designing better operators

[ trace through an idea which goes beyond MCRG to 1educe the
high-frequency noise in operators. The presentation style is evolution-
ary rather than chronological.

DeGrand '18] presented a calculation with “fat” operators. Rather
than the standard blocking with a change of scale, he just uses Swend-
sen’s b = 2 transformation to define fat links connecting every alternate
site. This operation iv performed only on spatial links and glueball op-
erators are made out of these fat links of length 2. Note that in this
construction there is no change of scale, as distinct from MCRG ideas.
From his calculation, there is evidence that glueball operators are far
more extended than those used before. | have shown his results in
Table 14 (entries 16 to 18) but [ have some minor reservations about
the data. The statistical errors are large and the glueball mass shows
no vanation between J = 6,608 and 6.1. Second, the calculations are
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done on one lattice size. Therefore, finite size effects and statistical
errors are mixed up. For the present I would conclude that this data
provides corroborative support for the previous result ﬂeﬁ’-‘-z 3 once
we take 0, measured from elsewhere.

A similar idea of using fat loops has also been proposed by Teper
.19]. He uses the same construct as DeGrand, but does not project the
averaged link back onto SU(3). This leads to a small gain in CPU time
but should be irrelevant for the results provided the extra part does
not have larger short distance fluctuations. The more important idea
incorporated is to carry through the blocking procedure recursively to
produce very fat loops.

The APE collaboration (20| move away from MCRG ideas alto-
gether by their use of “smeared” operators. They replace the field at
each link by some average of the field in a neighborhood and study the
behavior as the neighborhood is enlarged. In practice, this is done as
follows: Each link U" on the lattice is replaced by

U—U+e) UL (2.9)

spatial

where UUU?! is a staple, and ¢ is the smearing coefficient. This process
is carried out recursively, so the gauge fleld on the link represents a
smeared average over larger and larger neighborhoods. The sequence of
plaquette operators so formed is labeled by the numter of the recursive
step in defining a link by eqn(2.9). They calculate the glueball mass
using just a simple plaquette on each level separately. If we examine
the plaquette obtained after a number of smearing steps in terms of
original links, it consists of a very large number of thin Wilson loops
which form a glob. Thus, the operator is smeared over the physical
glueball.

The single parameter ¢ is insufficient to match onto the wavefunc-
tion of the glueball. There are two possible extensions: One is to im-
plemaent a variational calculation with the set of operators taken to be
loope of different sizes, measured at different smearing step, and with
different ¢ at each level. Another possibility is to first fix to Coulomb
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Fig. 4: The effective string tenaion (L)L for L = 12 as a function
of the number of smearing operations (20| and for various r. The best
estimate is given by where curves r = 2 and 3 intersect.

gauge and then repiace each link in a spatial loop by a weighted average
over parallel links. The reason for fixing to the Coulomb gauge is thatin
this “averaging” the link is not gauge invariant 1.¢. all paths do not start
and end at the same point. If the Coulomb gauge fixing is reasonably
smooth, then the optimum weighting will provide information about
the glueball wavefunction. Again, we would like to play with the size
of tha loop. Clearly, to aven test the usefulness of these enhancement
requires more compute power than is currently available. However, they
should be kept in mind, especia''v the notion that glueball operators
do not have to have a simple rep. ssentation in terms of Wilson loops.

The calculation with smeared operators may be further improved
by using extended actions. This is based on the {ollowing observation:

L



The average plaquette with the action in eqn. (2.8) at an 3,7, = 6.0
is =3 0.63 in contrast to 0.594 with the Wilson action. Thus the short
distance fluctuations are reduced with such improved actions.

[ now return to discussing the results for 1\97‘-;-:- The source used
by the APE collaboration is to set links in only two spatial directions
to the identity. In figures 4 and &, [ show their results for ¢ and 0™ +.
The three curves in figure 4 are for the effective “o(r)” with r = 1,2, 3.
The great hope presented for such calculations (especially glueballs) is
that m(r) for r small, agree with the asymptotic mass derived from
the standard 1-mass exponential fit to r > 4 after a sufficient number
of smearings operations. They find that this is true at - = 3 for both
the string tension and the gluebails. However, we neec 1ome caution
here. By themselves, m(1) and m(2) with smeared operators do not
lead to a reliable estimate. The estimates m(3) and m(4), for the no
smearing case, are by themselves within 10% of the asymptotic result
quoted. Also, we (9] had found that the source method supplemented
by the variational calculation gives the asymptotic value from r = 3 at
a similar coupling. So, at 8/g3 = 5.9 the only new thing the smearing
method is really giving us is confidence. We need a test at weaker
couplings.

Let me now focus on the finite size effects. For o they again find
reasonable agreement with y7r. The glueball is a new story. The f-
nite size effects are huge (see Table 1). This is completely consistent
with the glueball being a very extended object, but it also makes pre-
dictions for infinite volume results difficult because such large effects
make L uscher's derivation incomplete.

In figure 3, [ show the global data on the van Baal-Koller plot of
:1,%)7" versus 3 = mg++ L. Some of the points are labeled by the entry
numnber in table 1 and the error bars are suppressed. They are large
and can be evaluated from the data in table 1. If scaling holds, then
for suffieiently large ¢, the data should coliapse on to a single line with
a positive slope A in the variable 2. In that case, '%‘f,‘—is given by *
[ leave out points 1,6,7,8 since they are at strong coupling and show a

deviation from the universal behavior. The preferred fit, so far, is the
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Fig. 5: Estimate of the O** glueball mass obtained from a 1-mass
fit with 7min = 4 as a function of the number of smearing steps.

solid line which gives '%f'-‘-au 3.1 since point 15 has large errors. On
the other hand just fitting the data at 8/g? =2 5.9, the dotted lire, gives
33%‘-:: 4.6! This again highlights the uncertainty in the results due to
finite size effects. To summarize, we need more data at 6/¢? = 5.9 for
various lattices sizes to understand finite size effects.

3.4) The 2%+ state

Berg, Billoire and Vohwinkel (16| have, over the last two years,
devoted considerable efort to taming the 2**state. The basis of
their study is a fnite volume result derived by Lischer (8]. The an-
alytic caleulation for SU(3) hes recently been done (17|, and predicts
:—:-:—:- 1.2. This calculation is valid only for small 2 where z is the di-
mensionless scaled variable s = mq.. L. Berg ¢t al. advocate the use of
z to isolate the fnite volume corrections from finite g scaling violations.



If scaling exists, then the finite volume corrections have a simple form
and all data should eventually collapse onto a single universal curve.

Berg et al. work on L3 x oo "attices and measure the 0*+, 2++,
masses and ¢. To determine the masses of the 0™ *and the 2+ +states
they measure correlations of Polyakov lines in the adjoint rcpresenta-
tion without a source. The signal in this channel exists only when (P)
is large and 6/g%small. Their cumulative estimate is ;‘9“ =1=x.2,
based on the data shown in figure 6. There has been a lot of contro-
versy over whether, in a small box with 20(L)L < m, the states they
measure are 0" +and 2**or some bound state of color electric excita-
tions. Looking at the errors in the data for z > 2 und the Jack of an
asymptotic value, I think we should wait for calculations in a large box
for a reliable number. Meanwhile, what should be taken seriously from
their calculations is to question whether the 2+ *state is really much
heavier than 0+ *.

A question relevant to the above discussion is the connection be-
tween the finite box transition at z ~ 1 and the Euclidian finite tem-
perature transition at z = 5 [22|? The most probable scenario is that
there exists a single Z(3) symmetry s eaking transition that moves
from Lischer’s predicted answer in 4 smaii volume to z =~ 5 as the
lattice is changed from L3 x oo to %03 x N,. An additional poss.bility
is that the z ~ 5 transition leaves its signaturs {maybe as a crossover
involving level crossing ) on the L3 x oo system at z ~ 5. The only
relevance of this detail for continuum physics is whether to trust an ex-
trapolation of the small box data, especially fcr the ratio 3‘-9-‘-- frorn
small z. However, if the present trend of large ‘niita size correct.ons to
0** is not a statistical Buctuation, then ther~ i: no reason to expect
the 2** or the mass ratio will be better behavs=a. Wa therefore need
to explore the large s region with dedicated super.symputers like the
APE.

For 2**, the signal in the APE calculation exiats only up to r = 4
and their estimate, m(3), in preliminary because c” laige statistical and
uncontrolled finite size effects. Other than t'iat -hey feel that m(3) is
a reasonable estimate of the asymptotic value becauss of the smearing
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17] for m(0**)/m(2++*). The current status of the large z results for
VK /m is given in Fig. 3. For details of Berg et al. data see ref. [16b).

method. Their present conclusion is a light 2**, with 785 | within
20% errors.

2.5) Conclusions

[n a lot of the following analvsis I will probably be guilty of mak-
ing issues of trends that are statistical fluctuations. So the reader is
cautioned in advance.

[n all cases for which 20L < mg++, the statistical errors are large
and the fite are comparatively not as good. Thus the physical picture
that these string states strongly influence the glueball channels is rea-



sonable. Lesson: Avoid working on small lattices which don’t satisfy
20L > mo++

The finite-size correction works well for the string tension. How-
ever, it should also be pointed out that in many cases the statistical
errors are large and the number of different L used are small. So it
should not be considered de facto yet.

Both de Forcrand and the Rome group have made a finite size
analysis on three different lattice sizes. On L = 10,12 their results
are in agreement. Neglecting L = 8 (for which 20L < mg++), one
notices a large finite size effect for the 0** zlueball. If true, it is
too large for Lischer’s formula to be valid. Taking all the results in
table 1 into account, let me propose a phenomenological finite size
behavior shown in figure 7. In region A, the glueball mass is large
due to mixing with the string states and from being squashed into a
small box. In region B, the dominant effect is multi-gluon interactions,
which if the three glueball coupling is small may be handled by eqn
(2.5). The intermediate region has a dip (at least non-monotonic) as
all the data seem to show. Thus, unless we understand how to do finite
size extrapolations, glueball calculations will require lattices with very
large transverse dimensions.

4
m (L)

-
—

L
Fig. 7: A heuristic finite size behavior of glueball mass. Region A is
dominated by string modes. The infinite volume extrapolation has to
be made from region B with a form which is not known yet.
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To decide whether the improved action program is working, con-
sider the new point at Kr = 9.2 (21}, which on the van Baal-Koller plot
is marked # 1. It corresponds to B.ys =~ 5.67 based on o. It should be
compared with Wilson axis results at 6/g2 = 5.7 (# 7 and 8). I think
the data has much too large errors and in light of uncontrolled finite
size errors it is not possible to make a confident statement about an
improvement.

The evidence is in favor of a light 2** glueball. The objections
against the work of Berg et al. —extrapolating from small z values for
a theory with a first order transition—have to be reexamined in light
of the result of the Rome Group. At present the results are still too
preliminary to decide details such as which state is lighter and by how
much.

Right now the smearing method of the Rome group needs to be
explored further. A crucial test is to repeat the calculation with some
of the variations mentioned at say § = 6.2 and check whether it lives
up to its promise.

In conclusion, let me say what I would do if I had a year of dedi-
cated X-MP time. I would do a high statistics finite volume study on
L = 14,18 and 22, using the variational method with smeared loops.
I would use a source that couples to 0**and 2*+(maybe the one the
Rome Group used) at effective coupling 8/g? = 5.9 befcre moving on
to 6.2.
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3) QCD WITH DYNAMICAL FERMIONS:
THY CHIRAL TRANSITION

The partition function for QCD with dynamical fermions in Eu-
clidean space can be written in a number of equivalent forms:

Z = /DwaTDU ezp(Sc + (D +m)v) (1a)
z= / DU det(D + m) exp(Sc) (1b)
Z =/DUDgngofezp(Sc — soz-_—b—i——l-:n—zgp.) . (lc)

Sc is the gauge action (possibly an improved action). ID is the fermion
covariant derivative, and m the quark mass. For staggered fermions,
the form (1c) applies in which the scalar psuedofermion (PF) field ¢,
lives only on even lattice sites.

Including fermions in the theory makes the action non-local. This
non-locality is manifest in the determinant or in the inverse of the
Dirac op=rator. Efficient algorithms to include dynamical fermions in
numerical simulations are very important in Condensed Matter Physics,
Statistical Mechanicsand I .ttice Gauge theories. In the last four years,
considerable effort has been devoted to algorithm development. The
five classes of algorithms that have been explored so far are:

1! Pseudo Fermions (PF) [1].

2] Exact Algorithm (EA) [2](3](4].
3] Molecular Dynamics (MD) {5].
4] Langevin (LG) [6].

5] Hybrid (HY) (7].

The details of these algorithms have been covered in the lectures
by Mike Creutz, John Kogut and M. Fukugita. [ will discuss some
aspects of the exact algorithm. By and large, [ will concentrate on the
status of the ;esults {or the chiral transition. The status of the hadron
spectrum with quenched and dynamical fermions is reviewed by M.
Fukugita.

[y



3.1) The Chiral and the Deconflnement Transition

Chiral symmetry plays an important role in modern theories of
particle physics. This relies on the observation that the u and d quark
masses are very small or equivalently the pion is light. Thus chiral
ymmetry is regarded as an almost exact symmetry of nature.

Even if the u and d quarks were exactly massless, the zero tem-
perature QCD vacuum would not preserve handedness i.e. the fermion
number would not be individually conserved for left handed and right
handed particles. This is because in addition to the mass term
W,¥R + Ugv¥r, E - B fluctuations (instantons) in the QCD vacuum
do not respect handedness. Chiral symmetry is spontanecusly broken.
The order parameter in this limit is (¥¥). A non-zero value gives the
amplitude for a left handed quark to move in a closed loop and end up
as right handed.

The chirally synunetric state has higher energy. However, experi-
ence with such symmetry broken ground states suggest that at some
high enough temperature the symmetry is restored. So, the questions
we would iike to answer are: Given the physical quark masses and
QCD, 1) does the system gc into a symmetric state at high tempera-
ture, 2) is the nature of the transition discontinuous, continuous or just
a cross-over and 3) can we calculate and predict the signatures of this
transition.

[n addition, our theoretical prejudice is that hadronic matter at
high temperature and density undergoes a transition to quark-gluon
plasma. This deconfinement transition is important to understand be-
cause it will be investigated by the present planned heavy ion experi-
ments if the transition temperature is below a few hundred MeV. Suc-
cess depends on the nature of the transition and our ability to predict
the transition temperature.

The only quantitative tool available at present to address these
non-perturbative phenomena is the numerical simulation of Lattice
Gauge theory. Since we have a technique (Monte Carlo simulations)
that is still in the atage of algorithm development, it ia natural to pick
a qualitative goal. The one | will focus on is: What is the order of



these two transitions and are these two transitions related?
3.1a) Status of the Pure Gauge Theory

Simulations of pure gauge SU(3) show a strong first order transi-
tion at a temperature T, ~ Agzy (8](9]. At this transition the global
Z(3) symmetry of the theory is spontaneously broken. This is charac-
terized by a non-zero expectation value of the Polyakov line (L) in the
high temperature deconfined phase. This non-zero value of the order
parameter implies a finite free energy for the quarks. The scaling of
the T, data is discussed in section 4 of my lecture on MCRG. A second
order parameter, the chiral condensate (Yx) measured in the quenched
approximation, is also discontinuous at the transition. (Yx), when ex-

trapolated to my = 0, changes from a non-zero value at low T to zero
in the high T phaase.

3.1b) Introducing Dynamical Quarks

Dynamical quarks act as external flelds and explicitly break the
Z(3) symmetry. (L) is still A measure of the quark free energy but
it is non-zero for all temperatures due to vacuum polarization. (Yx)
remains a good order parameter to study chiral symmetry. The only
theoretical understanding of the realization of chiral symmetry comes
from a renormalization group analysis of an effective spin model in 4 - ¢
dimensions [10|[11]. The prediction depends on the global flavor group
and on whether instantons are impoitant t.c. whether U(1) is broken
down to Z(ny). In case the symmetry is U(1), their analysis suggests
that QCD has a fluctuation induced first order chiral symmetry tran-
sition for Vy > 2. For ny = 0,1, if the transition is second order then
it is in same universality class as O(2n,) vector models. The same is
true for n, = 2 if instantons are importunt s.e. the symmetry is Z(n;).
For ny = 0,1 there are no predictions, while for n, = 3 the transition
should be first order which changes to fluctuation induced first order
for ny > 4. These predictions are not very firm and there are the usual
caveats of the e-expansion. So we should proceed without any strong
bias,



For T < T., one expects \YY) # O when extrapolated to m; = 0.
For T > T, the chiral symmetry is restored, consequently (Yx) x m,
for small m,. This needs to be verified. Also, if, as in the pure gauge
theory, there is a discontinuity in (L), then we expect to see interesting
thermodynamical properties of the quark-gluon plasma {12| created in
heavy ion collisions.

The expected phase diagram for QCD is as follows: The confine-
ment transition at my, = oo extends to some finite my in the mqy — T
phase plane, and similarly the chiral transition at my = 0 extends to
some non-zero m,. The questions to settle are whether the chiral tran-
sition with two physical light flavors and heavier s quark is first order,
and whether the two transitions are connected.

3.2) Staggered Fermions

Staggered fermions have a remnant continuous chiral symmetry
on the lattice. This is sufficient to guarantee that (x) calculated on
the lattice does not need any subtractions and that the chiral limit is
at my = 0. For this reason, most of the calculations have been done
using staggered fermions. However, for each flavor one puts in by hand,
the theory actually has four flavors. Thun the flavor symmetry on the
lattice is 4n,. This accounts for why, until recently, most results are
for 4 flavors.

A technical point: In the continuum, the flavor symmetry at
zero temperature is Z(ny) x SUr(ny) x SUr(ny) which breaks spon-
taneously to SUy(ny). Since the lattice regulator destroys some
of the continuum symmetries, the lattice symmetry group is only
U(1)a x U(1)y entangled with a complicated mess of discrete sym-
metries, which we expect breaks spontaneously to U(1)y plus discrete
bits [13]. It is only in the continuum limit that one recovers 4 degener-
ate flavors. Can this difference in symmetry lead to a spurious result
in our calculations considering how sensitive the predictions from the
¢-expansion are on the flavor symmetry? We don't know and will have
to proceed on with a nagging suspicion. On the brighter side, calcula-
tions of the quenched hadron spectrum show that for 6/9% ~ 8.2 this



symmetry is restored dynamically to a very good approximation {14|.
Another check on this subtlety is to simulate both an effective spin
model that has the continuum symmetry and one with the discrete lat-
tice symmetry and to compare the results. We, at present, don’t have
a spin model with the lattice symmetry and therefore cannot perform
the test.

The discussion of the chiral transition should be restricted to small
quark masses. This is because for my comparable to the cut-off,

. A dvk
w0 - [t
0

k-y+m

is expected to vary simply as 1/m. The gauge dynamics comes in
through k- v and does not contribute in the limit of heavy quarks.
Thus, for my above some value, the simulation is essentially quenched.

3.3) Results for 4 Staggered Flavors

Prior to the summer of 1986, the status of the chiral transition
was not clear. This was primarily due to short data runs at large m,
where the signal is weak. Also, there were doubts about thermalization,
or confidence was lacking due to the evolving nature of approximate
algorithms with uncontrolled systematic errors. The most detailed cal-
culations were by Kogut et al. [15] using the M D and hybrid algorithm.
Their conclusion was that while the order could not be pinned down,
the system showed a very rapid crossover for mq = 0.1 and 0.05. Simi-
larly, Gavai (16| ruled out evidence for a first order transition. He used
the pseudo-fermion algorithm with an acceptance rate of 70%

On the other hand, Fucito and Solomon ([17] used perturbation
theory to write down a 3 flavor pseudo-fermion algorithm and claimed
evidence for a first order transition. Their result suffered from poor
statistics, especially since they were using time history of the two states
as the probe. They could not rule out the possibility that the signal
waa due to incomplete thermalization.

Fukugita and Ukawa (18| used the Langevin technique and made
hysteresis riuns. They found a hysteresis in their runs at m, = 0.1, for



N:. = 4, in the interval 6/¢g?= 5.05 to 5.15. Their best estimate for a
transition coupling was 6/¢g%~ 5.1. Their conclusion was that the tran-
sition is first order. The chief criticism against their calculations was
again that the runs are not long enough for complete thermalization.

3.3a) Present Status: 4 x 43 Lattice

The popular consensus is that the transition for 4 staggered flavors
is first order. This was first demonstrated by extensive runs using an
exact algorithm on a 4 x 42 lattice [19]. The small volume was dictated
to us because we wanted to nse an exact algorithm. Only then could we
work at any mg with control over systematic errors and bias. This way
one could investigate the chiral limit. Furthermore, the exact algorithm
is not limited by the small step size approximation. A 4 x 43 lattice
is not as ridiculous as it seems. The system is at finite temperature
except that there is no preferred direction s.e. the Boltzmann damping
of higher states (definition of temperature) is valid for propagation in
all four directions. The effect of a small volume can be a wash out of the
transition, but it is much less likely to generate one. The disadvantage
of EA is also obvious: We have no quantitative predictions for T..

We have used a mixture of two approaches; for a given 6/g%to find
a mg at which the transition occurs or for a given m, to find the corre-
sponding g.. The location of the transition is fixed by requiring that at
that g the discontinuity in (Xx) be maximum. To get the value of (Xx)
in the two states, we first make runs away from the t insition or takea
peek at existing hysteresis data from other calculations. Then we make
a crude scan in ¢ till we can observe flip-flope with this discontinuity
(or as close to it as pousible). In the data you will note that on either
side of g. we observe jumps with much smaller discontinuity.

The next part of the talk is a picture gallery of our data. The
attempt is to show how the observables behave near and at the trarsi-
tion. Since all the observables, (Yx), (L), Wileon loops are correlated
and show the transition we plot (Xx) versus Monte Carlo sweep num-
ber to demonstrate the transition. In the data the convergence of the
conjugate gradient algorithm is specified by the number of iterations,
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Neg, as it will be relevant to a later discussion.
1] At6/g°= 4.8, my = 0.025 and with N, = 60 there is a small jump

indicating a transition at smaller g (figure 1).

(2] At 8/¢3= 4.9,m, = 0.1, we find only thermal fluctuations with

M., = 60 (figure 2).

(3] Atfor my = 0.05 (figure 3) we do not see a two state structure, but

5|

7l

3|

compared to mq = 0.1 the fluctuations are larger (again indicating
a possible transition at smaller g)

The situation changes at mg = 0.025. The runs with V., == 90 are
shown in figure 4a. We see metastability and a 2 state behavior
characteristic of a first order transition. To protect against inade-
quate therrnalization, we ran long enough to see flip-flop between
the states. The discontinuity is the maximum expected (compare
with figs. 1 and 6). In Figs. 4b and 4c we also show the data for
1 x 1 Wilson loop and (L) in one of the 4 directions (all 4 direc-
tions show similar behavior). There is a clear correlation between
all observables. We regard this as evidence that at small m,, QCD
has a first order transition with a discontinuity in (Xx), (L) and
in Wilson loops. While the chiral and thermal transitions need
not have been related, the data shows that for T > T, the system
is deconfined and chiral symmetry is restored. Having shown the
transition, we continue the search for the end point by increasing
my.

At 6/g*= 4.95, my = 0.05 and with N, = 60, we again see the
transition with the characteristic flip-flop (fig. 5) and the expected
discontinuity [20].

At6/g*= 4.95and m, = 0.025 (fig. 8), the transition exists but the
systemn spends more time in the xS phase. Also, (Yx) inthe xSB
phase is only = 0.3. We estimate the transition for my = 0.025 at
0/9’:‘ 4.91(3).

For mq = 0.02 (fig. 7Ta) and mq = 0.015 (fig. 7b) the system isin
the high temperature phase, so the transition has to be for 6/9%<
4.95.

AL 8/g?= 502, my = 0.1 and N, = 30 the system is predom-

1.10
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inately confined with hints of an approaching transition in the

sharp spike (fig. 8a).

(9] At 6/g2= 5.04, m; = 0.1 and N, = 30 (figure 8b) the system
shows a clear two state structure with the expected discontinuity

(see figure 9).

'10] At 6/¢%= 5.07, m, = 0.1 with N, = 30 (figure 8c), the system
shows fluctuations but there is no clear signal of metastability. We
are, at present, extending this run. At 6/g?= 5.1, mgy = 0.1 and
N, = 30, we again see flip-flops as shown in figure 8d. However,
the discontinuity is small s.e. the value of (X¥x) in the xSB phase
is only ~ 0.3 due to the rounding effect. Thus 5.10 is > 6/g2. At
6/9%= 5.13, the system is already in the xS phase (figure 8e). We
estimate the transition to be at 5.04(3).

Evidence for a first order chiral transition was found on expioring
the small m, limit. At 6/g? = 4.9 for my = 0.025, the discontinuity
is very large in the order parameter (X¥x) and flip-flops provide clear
evidence for a first order transition. If it is a genuine first order transi-
tion, the discontinuity should decreases (increase) with m, increasing
(decreasing). We have provided evidence of this at my; = 0.05 and
0.1. Locating the transition at my; = 0.1 has been rauch harder for
a very simple reason. Due to the large finite size rounding, the two
states exist over a large range of 6/g%. But over most of this range, the
discontinuity is small and it is hard to distinguish flip-flops (genuine
metastability) from fluctuations. I believe this is a general property
of first order transitions —— the width over which one can observe
metastability decreases with a decrease in the discontinuity.

Our goal is to confirm whether there really exists a range of 6/¢?
over which there is no transition. Preliminary evidence shows that even
at mq = 0.2 there is metastahility. Thus, at present, we support the
picture that the transition goes over from a chiral dominated one to
the deconfinement transition without a region of analyticity.

To further analyze the transition we study (Xx) as a function of
mg. The estimates for (Xx) in the two phases are shown in figure 9.
The data has been compiled from the runs given above. In the confined
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phase we estimate ((Xx) —0.3) x m,. In the deconfined phase the data
at small m, agrees with the expected behavior (¥x) « mq. Thus,
with large lattice Jata we can eventually determine the value of m, at
which the linear chiral behavior breaks down. The observed hehavior
though significant is not sufficient proof of the order of the transition. A
corroboration on lattices with larger N, and with N, » N, is necessary.
A technical point about locating the transition: The usual hys-
teresis run is very useful tc locate the region of the transition, it is
not a very good method to confirm a first order transition. The best
tool we have at the moment is to either show a flip-flop (tunneling on
a finite lattice) or use two starting configurations prepared in the two
states and show that they coexist as such for runs much longer than
thermalization time (barring tunneling which can be distinguished by
its abruptness). In figure 10 one such run is shown from [21l. In the
second case one needs a good measure of the thermalization time.

3.3b) Comparison of the 4* Data with Various Algorithms

The results with the exact aigorithm have been reproduced by the
hybrid algorithm [21](22| and the Langevin algorithm [23]. These 4*
results would have been meaningiess without the confirmation on the
the 4 x 83 lattices [21]{22](23]. It turns out that for the actual numbers
- - the discontinuity in observables, etc --— there i3 good agreement
between the 4 x 4% and the 4 x 83 lattice data. So, it is meaningful to
continue pushing 44 calculations to explore the phase transition.

I feel that it is very important to fix the power law, V! +2+7 by
which the computation time for producing independent configurations
grows for a given small step size algorithms . Here V is the lattice
volume, a is the exponent due to step size limited slow movement
through phase space, v is the exponent due to critical slowing down
as the coupling ¢ is decreased and ¢ is the prefactor. Both a and 4
are a function of g and my. [ present a crude estimate of the prefactor
based on the Monte Carlo time for producing flip-flops in the exact
versus **ep size limited algorithms. Within factors of five, it looks
like r = § corr~sponds to a single sweep of the exact. Since most
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of these algorithms have been run at ér = 0.01 we should keep the
large number of sweeps, 500 to 1000, in mind when worrying about
statictics in serious calculations of say the hadron spectrum. These
estimates depend on the parameters and at weaker coupling and smaller
mq the step size will have to be decreased further {24). An a posteriori
justification for our use of the exact algorithm on the 4 lattice is that
it is no slower than the small step size algorithms once you fold in the
decorrelation time. To arrive at this conclusion I have used update
times of 003, 1 to 2, and 450 seconds for a 4 lattice on a Cray X-MP
for the pure gauge, Langevin and exact algorithms. The limitation of
the exact algorithm used so far is that the lattice volume caanot be
made any bigger with the current computer power.

Another feature to study using the 4 data is the shift in the crit-
ical coupling as a function of € or ér. The present status is shown in



mg EA HY 1 HY 2. LG 1 LG 2
0.025 4.91(3) 4.94(4) 4.96(3) 25.02
0.05 ~4.95 5.05(5)*

0.1 5.04(3) 5.13(3) 5.1

Table 1: The estimates for the transition coupling on N; = 4 lattices
and for 4 flavors. The points with * are estimates based on the midpoeint
of the hysteresis curve. The data is from: Exact - [19](20](25]; Hybrid
1 - [21](28]; Hybrid 2 - [22], Langevin 1 - {18] and Langevin 2 - [23].

table 1. The hybrid simulations are, within statistical errors, in agree-
ment with the exact algorithm at light quark masses. The Langevin
algorithm gives a much larger shift than can be explained by the first
order correction in &, which is =~ 0.14¢3. The Brookhaven group is
working hard to understand this effect. The discrepancy increases for
the HY also at mgq = 0.1. It is not clear whether this is just due to sys-
tematic errors in fixing the precise location of the transition especially
as the rounding gets large or because of something more serious. The
various estimates do lie within the width of the hysteresis.

3.3c) Going from N, =4to 6

Kovacs et al. [26] find evidence for a first order transition at 6/g*=
5.125, mq = 0.025 on a 6 x 103 lattice for 4 flavors. They also find large
fluctuations in addition to the metastability. So they propose that the
end point of the first order line lies very close to this value of m,.

Using their data for N¢ = 4 and 68, they calculate the value of
T./Agg using asymptotic scaling. The ratio changes from 2.8(2) at
N¢ = 4t02.1(1) at Ny = 6. This is close to the pure gauge theory result
(2.6(1) changes to 2.12(1)), and this behavior is not surprising since
gluons are the major contributors. However, we should be cautious
in pushing this agreement because we don't know what scaling to use
(asymptotic scalizig may be violated by as much as a factor of 2 at these
g). What is clear is the need to go to larger N, to get a prediction.




The jump in the gluonic and fermionic energy density at the tran-
sition is iarge. The results from {26] are shown in figure 11a. The errors
are large, and there is still some overshooting of the gluonic contribu-
tion at the transition. To predict a hard number for the latent heat, we
need to further remove finite volume effects. Meanwhile, knowing that
a large discontinuity exists is certainly a help to the experimentalists.

In figure 11b, I show the time history of { [ ). A total of 180,000
sweeps were required to show a flip-flop! This should again serve as a
warning for the slowness of the algorithm coming from a large prefactor.

3.4) Results for 2 and 3 flavors

Let me for the following ignore the fact that staggered flavor sym-
metry is broken on the lattice. Then to change the number of staggered
flavors in many algorithms is easy. In M D, hybrid and Langevin al-
gorichms the fermions are incorporated through a bilinear noise term
with a prefactor ny. This can be adjusted to any value. In the exact
algorithm one can take an appropriate power of the ratio of the deter-
minant. A number of groups are using this technique to explore 2 and
3 flavor cases [22][23](25][27).

3.4a) 3 flavors

The result for 3 flavors from the Brookhaven group (23] is evidence
of a first order transition at my = 0.025 at 6/g% =~ 5.09. A lot more
data are needed to get an estimate of T%.

3.4b) 2 flavors

The published results for 2 flavors are controversial. Fukugita et
al. [27] show a hysteresis cycle but more important a flip-flop signal
at mq = 0.1, 8/g% = 53725, ér = 0.0025,. The flips are not quick
in Monte Carlo time but nevertheless there. In figure 12, [ show their
results for variance in the (L) with my = 0.2 and 0.1. The large fluc.
tuaiions (variance in (L)) at m, = 0.2 compared to 0.1 are indication
that the transition at m = 0.1 is not the deconfining transition. What
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is worrisome in this study is that the system does not spend much time
in a given phase. A careful study at mq = 0.05 showing an increase in
the discontinuity would be nice for a confirmation.
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Fig. 12: Variance of the Polyakov line (L) x10% for mq = 0.2 and 0.1
on a 4 x 83 lattice and with two staggered fiavors [27).

Gawai et al. (23] and Gottlleb et al. (22| do not nd a convincing
signal for a 1 order transition at mgy = 0.025 and 0.0125. This is
surprising considering the result of Fukugita ¢. al.,, since we expect the
discontinuity to grow with decreasing m,. In figure 13, the data from
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(22] for (Xx) is shown. A clear statement from this calculations is that
for small quark rnasses the transition is very rapid.

We have preliminary results at m, = 0.02,6/g* = 5.28 which are
shown in figure 14. There is again the characteristic presence of flip-
flops. However, the fluctuations in the chirally broken phase are very
large. Is this a signature of a fluctuation induced first order transition
when approached from the broken phase? We need more data to answer
this question.
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Fig. 14: Evolution of (¥x) for 2 flavors on a 4 x 43 lattice using the
exact algorithm at m, = 0.02 (28).

Figure 15 is from the Brookhaven group. Up to now it shows
preliminary evidence of coexistence at m, = 0.025,6/ g’ =532o0na
4 x 83 lattice. However, Potvin et al. would like to finish a longer run
30 as to rule out slow thermalization.

To conclude, as this evidence accumulates, we shall be able to fix
‘the order of the chiral transition for the case of 2 light flavors and the
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strange quark. Looking ahead, we face a much harder challenge. We
have to repeat these calculations with nan-zero baryon density (non-
zero chemical potential). Unfortunately, in this case the determinant
is intrinsically a complex number and we don’t yet have a way for
including it as part of a probability distribution.

3.5) Wilson Fermions

Forcrand et al. [28] measure (Xx) and look for a discontinuity using
an exact and an improved (“bush-factorized”) PF algorithm. They find
a discontinuity for NV, = 4 at a larger Wilson quark mass than for the
staggered fermions. There are two possibilities: 1) they were assuming
the transition for staggered fermions occurs only for my < 0.025 and
2) due to the explicit chiral symmetry breaking in Wilson fermions,
there is no obvious connection between the mass for the two kinds of
fermions. In fact, our quenched hadron spectrum calculation at much
weaker coupling (14| shows that for constant physics, the bare Wilson
mass is a factor of two heavier than the staggered fermion mass.

[t would be interesting to push this calculation to see whether near
k:(g) (defined by zero pion mass) Wilson fermions have dynamically
regained sufficient chiral symmetry and show the expected continuum
chiral properties.

3.68) Systemnatic Bias in the Exact Algorithm

In the exact algorithm, the ratio of determinants R = det(1 +
M~15M) is calculated at each link update. Since we use staggered
fermions (4 flavors), the algorithm requires a calculation of a 6 x 6 block
of M~!. Because M~! is calculated with the conjugate gradient (CG)
iterative algorithm to some approximation, even in an exact algorithm
there can be a systematic bias. In a Metropolis update, a link can
be changed many times without having to recalculate M~!. The fast
multi-hit algorithm was first described in detail by Gavai and Gocksch
'4]. Most of the results we obtained are with antiperiodic boundary
conditions in all dire~tions. We made some checks with the boundary



con litions switched to periodic in three directions [19]. We update
each link with 50 hits and the acceptance is adjusted to =~ 30%. In
solving AZ.pen = ‘\/IT.\'!I","‘ = b, we define the convergence by C =
Q—Ti\z%f—"—’l, which depends on the number of CG iterations (V).

We now present an analysis of the systematic biases in our simu-
lation at J = 4.9. Our implementation of the CG algorithm tends to
underestimate the effects of the fermions, i.e. it tends to give too small
a value for § = |In(R)|. We have studied this by changing a single
link and comparing the exact R with that calculated with a variety
of CG sweeps. The exact R is obtained by calculating the determi-
na1ts, before and after changing the link, using gaussian elimination.
At my = .1, N, = 60 suffices to give the exact answer, while, for
N =30, S is underestimated by a few percent. For my, = .0235, the
algorithm requires N, = ¢0 to get S good to a few percent, while for
Ny = 30 the estimate of S is poor. These estimates remain valid when
we make rultiple hits on the same link.

To study if there is an accumulation of the bias, we compare the
product of the accepted determinant ratios (4 = InR,..) with the ex-
act answer (7). The data for mq = .025, Ny = 90 is shown in table 2,
together with in(det) and (C). In the high ‘emperature phase (1-10 and
36-41) one finds A < T, with only small deviations from equality. On
the other hand, the confined phase (11-35) has A significantly less than
T, though these are correlated. This phase also shows a marked deteri-
oration in (C), suggesting that M has small eigenvalues not present in
the high temperature phase. The difference between A and T is large,
but it has been accumulated over = 20 x .3 < 50 x 4 x 4* iink changes,
and so corresponds to a tiny bias in R for each change.

The disagreement between A and T gets progressively worse with
decreasing N.,, but C is consistently a factor of ~ 20 smaller in the high
temperature phase. Ccuversely, the bias decreases as m, increases. [t
is unoteervable for my = .1, N, = 60.

From such an analysis one can determine .V., required to avoid
a Dias at u given 6/g%and m,. Some of our best data does not quite
meet this requirement, but the presence of the transition for a number



Config. # Accepted True Ln(det M) (C) x 10"
Ln(det R) Ln(det R)
1 110.3 13
2 2.9 -29 107.4 1.0
3 -0.5 -0.3 107.0 1.4
4 -40.1 36.6 70.4 0.9
5 29.6 306 101.4 3o
6 5.1 5.1 108.5 0.9
7 -4.5 -4.5 102.0 0.9
8 6.1 6.1 108.1 1.1
9 -24.8 243 83.7 36
10 4.8 5.5 89.3 2.6
11 -53.4 45.3 43.9 20.
12 -1.1 6.4 50.4 26.
13 -27.8 17.2 33.1 26,
14 8.4 148 47.9 26.
15 -11.1 1.6 49.6 26.
168 -8.4 -2.3 47.2 26.
17 7.6 12.2 59.4 28.
18 -27.4 21.2 38.1 25.
19 10.3 244 2.6 26.
20 -22.0 18.4 4.1 24.
21 3.4 1.4 45.6 26.
22 2.9 4.5 50.1 26.
23 -15.6 -7.0 4.1 26
24 24.7 208 729 26,
25 -26.9 20.6 52.2 24.
28 -13.7 -2.1 80.1 28,
27 0.7 9.4 595 ‘4
28 -4.7 -2.2 573 24.
29 5.3 4.7 62.1 3.
30 -12.1 -1.3 54.7 25.
K} | -11.3 -38 50.9 25.
32 -30.2 19.2 316 26.
33 86 19.0 50.6 20.
34 -6.2 4.9 55.6 26.
i3 5.4 9.8 5.4 23.
36 44.0 444 109.8 6.7
37 3.1 -3.1 108.7 09
38 -13.7 13.7 92.9 1.0
k1) 9.9 9.5 83.3 1.5
40 19.8 19.9 103.3 1.7
41 -1.4 -19 101 4 o

Table 2: Comparison of in(detR) between the accumulated change in the determinant
and the true change. Each configuration is separated by 20 sweeps at 4 -+ 49,
m, = 0.025 and N,y = 90. Also given is the determinant on the fnal configuration
and the mean convergence C over 20 sweeps.



of values of V., makes it very likely that the trr.nsition would remain
for V; = oo.

Conclusions

Let me conclude by mentioning what [ think is the most promising
approach to simulations with dynamical fermions right now. It is to
use the algorithm of Scalatter, Scalapino and Sugar [29] in which one
uses an approximate update algorithm (say LG or HY with fourier
acceleration) to evolve the system through a certain number of link
changes and then to make it exact by a Metropolis accept or reject of
the whole step. The key point here1s to tre - the input couplings in the
hybrid update as free and to nptimize them to get a large acceptance
in the Metropolis step. The couplings in the Metropolis step define the
inal Boltzmann distribution. There are some recent very encouraging
results by Duane et al. [30] using this approach.
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4) WEAK INTERACTION MATRIX ELEMENTS
ON THE LATTICE

The pseudoscalar octet is, I think, the key to our understanding a
significant fraction of modern particle physics. The light pion is a man-
ifestation of a nearly exact chiral symmetry. The kaons are a periscope
to the unknown world of CP violation. How well we can explain the
large enhancement of Al = } amplitude in K decays refiects our abil-
ity to calculate strong interaction corrections to any process involving
low energy gluons. In all these phenomenon, the Achilles’ heel is ocur
inability to calculate the non-leptonic matrix elements at the hadronic
scale. Once the machinery to calculate matrix elements (ME) on the
lattice is established, the list of problems one can address is large, I
will only discuss the Al = é— rule and ‘e—' in this lecture. By these
examples I hope I can convay some of the excitement of the field to
you.

In writing this lecture I realized that it would be impossible for
me to cover the subject in any detail. Therefore what [ will do is
to motivate you, make the connection between phenomenology and
lattice measurements, mention the important issues and summarize
results. For details, [ have no option but to direct you to the published
literature.

4.1) The Al = } Rule

The phenomenology of the AJ = } rule is very simple. The isospin
deco, »osition of the two pion final state in Kaon decays is

) = I =2,1z=1)

) = \/.-l‘-|1=0.13’~'0)~ \/§l1’=2.12=0)

RS \/§11=o.12=o>+ \/éu 20 =0)  (4.1)

From expericaents we find
T(K* -« r*nY) < )
(K, -~ n9x9) 67V

(4.2)

ol



This ratuo can be understood if we assume that the weak Hamiltonian
13 essentially Al = % . A further corroboration is provided by the ratio
F(K. - ’r+7r—)

— —— =~ 2185+ 0.10 (4 3)
[(K, — m7)

since a value of 2 is obtained from tne Clebsch's alone assuming the
decay has no A/ = 3.2 part. Thus these decays provide strong evidence
for the AT = i- rule. The question we would like to answer is where
does it come from?

[f the electro-weak interactions are described by the spontaneously
broken SU(2) x U(1)y Glashow-Weinberg-Salam theory, then we know
the fundamental interactions at scale My, and these do not give a
Al = i- enhancement sufficient to explain the experimental results.
The final state in all decays is |[rx,, so there is no enhancement from
phase space factors. Finally, we don’t know of any other selection rule
that enhances one over the other. There is only one possible culprit,
QCD., that sneaks in to produce the Al = % rule. And it does it in an
insidious way The part of the theory we understand (large momentum)
i3 innocent. [t is the part that is hidden under the shroud of a large
coupling constant that we probe by non-perturbarive methods. So we
are forced to unravel the mysteries of one black box with another -
Monte Carlo calculations.

4.2a) Constructing the 4-fermnion Effective Hamiltonlan

The full range of momenta inv.-lved in these calculations is 0 to
Mu Wedivide it into two regions; call one L, for lattice, which ranges
from O to u and the other called P, for perturbation theory, which
rangea frormn u to Mw. The point u 15 taken to be > 2 GeV for two
reasons. First, the lattice scale 1 in any serious calculation will be large
enough to satisfy this condition and, second., the Wilson coefhicients
(couplings) at u can be computed reliably using perturbation theory
since the QCD coupling constant throughout P 1s small.

Henceforth, I shall label the M E of an operator (), by M, and
their Wilson coefficients by C,. The initial and final states for which



the ME are calculated will be clear from the context. L (R) is the
projection operator 1 — s (1 + 7s).

The weak interaction Hamiltonian density for the charged current
in the hadronic sector is [1] :

9
X = —= J,W* + h.e. 1.4
w 2v/2 b (4.4)
with the W-bosons interacting with the quarks through the current
g d
Ju = = @ED -V |s] (4.5)
2v2 b

Here V is the 3 x 3 Kobayashi-Maskawa (K M) matrix (2| that connects
the quark mass eigenstates with the weak eigenstates. It is parameter-
ized in terms of four angles 6,,8;,03 and é

Cy —31€3 —81383
V = 81C7 €1€3€3 — 3383€'%  ¢1c383 + sqczet? (4.6)
9187 €133€3 + ¢383€'% ¢ 8383 — cgeqet’

where ¢, = cosfh, and 8; = sinb, for 1+ == 1,2, 3.
The lowest order procedure to construct the effective theory at u

consists of the following steps (3] :

(1) Integrate out the W from the theory. The AS = | Hamiltonian
then consists of the 4-fermion operators, O +(u), O.(c) and O, (¢)
with say O, /c) defined as

O = FovuLdy EyyuLley + Favuley TyvuLd, (4.7)

The O, transforms as a linear combination of 27 and 8 under
SU(3)r while O_ is pure 8. It is the enhancement of the octet
operator we seek since it contributes only to Al = } . The coeffi-
cients (Cy = C_ valid at My ) are evaluated by matching ¥,/ at
the boundary. At My, the effective 4-fermion theory is

Nepy = %[Cu((),.(u) O _(u) = C(O0(e) +0O ()

< C04(t) +O_(1)] (4.8)



with

C. = sic2(c1e2¢3 — 3283e15) (4.9a)
Ce = sy92(c182¢3 — c283e'%) (4.9b)
Cu == Cc -+ Ct . (4.90)

To scale the coefficients C; down to m, one uses the renormal-
ization group (RG) with the 1-loop running coupling constant and
the 1-loop anomalous dimensions. Since the operators O, are mul-
tiplicatively renormalized this is straightforward. On scaling C_
increases with respect to C, because of a difference in the anoma-
lous dimensions. This gives some Al = i enhancement, (= 2),
but it is not sufficient to explain the rcquired factor of ~ 22.
Integrate out the top quark from the effective theory at m;. In tree
level matching, one simrly sets C'.(t) to zero and equates C (u)
and C (¢) below m; to their value above m;. More important. in-
tegrating out the ¢t quark generates additional 4-fermion operators
O3...0g. These operators arise from mixing with the so called
“penguins” diagrams shown in figure 1. Their coefficients start
out being zero at m, and their evolution down to m; is governed
by the 8 x 8 anomalous dimension matrix calculated by Gilman
and Wise [3|[4] (with corrections by Buras and Gerard (5] ) in the
basis O, ... Oy defined as

Oy = Favu(l - v8)ds Govu(l —v8)up — (u —¢)
03 = 36‘7“(1 - '78)db u67u(1 - 78)“0 - (u - C)

O3 = 307;‘(1 - 75)da Z 657»(1 - '75)‘“
q

Ou = Tamu(1 = v)dy I Tl = 73)4
)

O = Famu(l = 78)da I_ Tyvall + 73)ae
q

On = Tavu(L - 18)ds D Hru(l + 78)4a
o q



O7 = Favu(l — vs5)da Zeqﬁbn(l + 5)q»
q

Os = Tau(1 = ¥5)ds D eqyvu(l + 75)4a (4.10)
q

where ¢ is summed over u,d, s, ¢, b quarks; a and b are color indices,
and e, = 1(—1/2) for charge 2/3(—1/3) quarks. The operators O,
and O; are linear combinations of O;. These eight operators do
not renormalize multiplicatively, and the scaling is easiest done by
numerically diagonaiizing the anomalous dimension matrix. The
final values of C; and consequently our estimates will depend on
what we choose for the unknown top quark mass.

(3) Repeat step (2) 1.e. integrate out the b quark and scale down to u >
m.. Integrating out the b quark changes the anomalous dimension
matrix and the running of the coupling constant and the b quark
drops out of the sum over ¢ in £3n (4.10), but it generates no new
operators.

The eight operators O, ...Og and their coefficient functions define
the effective Weak Hamiltonian X,z at scale u.

Gr <

berr = 5 ; C,0; (4.11)
where the KM angles and the dependence on a, and anomalous dimen-
sion fac.ors is lumped into the C,. | have purpc ely chosen u > m,
so that the ¢ quark is not integrated out. This m.ans that we have to
explicitly implement GIM cancellation on the lattice by doing all cal-
culations with both ¢ and u quarks propagating in internal loops and
doing the (u — c) subtraction. The matrix elements of Xy, are evalu-
ated on the lattice because the region L is inherently non-perturbative.
Only one LL operator contributes to the Al = % amplitude. It
is a linear combination of 0,03 and O3 and transforms as [27,1,3/2]

under (SU(3)., SU(3)r, I:



Fig. 1: The diagrams that give rise to a) strong penguins Os and Og
and b) the em penguins O; and Og. The vector interaction at the lower
vertex gives rise to both LL and LR operators.

The operators Os...0Og (called the strong penguins because a
gluon mediates the interaction in the original penguin) are LR in dis-
tinction to Oy -+ - O4 and transform as [8,1,1/2]. They contribute only
tothe Al = % amplitude. The magnitude of the enhancement depends
on the C; and the M E. The coefficient functions for these operators
are large only if we integrate out the charm quark and evolve below 1
GeV. Originally, Shifian et al. [6] proposed that the M E are large due
to the LR structure of the penguin operators. They calculated the ME
using factorization and vacuum insertion and found that Cs Ms + Cg Mg
is large enough to explain a substantial part of the enhancement. That
analysis is wrong; they derived a wrong chiral behavior for the matrix
elements in the vacuum insertion approximation. The correct chiral
behavior of the matrix elements of Oy and O4 is the same as for the
LL operators i.e. they vanish in the chiral limit as m,my (7] (8] . The
present status of resuits from numerical simulations is that these ME
are small. Also, it is not kosher to run the C, down to scales below m,,
for there one has vary little confidence in perturbation theory. The real
parts of Cy and Cq above m, are small. Thus it seems unlikely that
these operators are the cause of the Al = § enhancement. So for a
choice of scale 4 > m., the AI = § rule has to come from the enhance-
ment of the octet part of the operators O, ... O, over the 27plet. On
the other hand the.imaginary part of Cq is dominant. Thus Mg will

&\
I



figure prominently in the analysis of ‘;I- .
The e penguins O7 and Og have pieces that transform as {27,1],
(8,1] and [8,8] and contribute to both Al = 3 and Al = 7 amplitudes.
The real part of their C, is too small, so these operators are ignored in
the analysis of the Al = % rule. However, the imaginary part, which
contributes to % , competes favorably with the contribution from the
strong penguins. The suppression of their C; by a.n is compensated
" by thefact that in the chiral limit, the {8,8] part of M7 and M3 does not
vanish as m.mg, but goes to a constant. Thus, as discussed later, their
contribution to % may be as large as that from the strong penguins.
All the M E we calculate on the lattice are real. The same ME
contributeto both Al = 15 and 5} . The coefficients C; are complex due
to the CP violating phase ¢'® in the KM matrix. So when one refers to
the real and imaginary parts of the amplitudes, the distinction comes
from the C;. The imaginary part will be proportional to sin é.

4.2b) Relating K —» 7 to K — =:

All the ME we are interested in involve K — mr. This requires
calculating 4-point functions on the lattice with two particles in the
final state. This poses the following problems for lattice calculations at
present
(1) The momentum of the two final state pions. Tl.e lowest non-zero

momentum on the lattice, g, is too large to allow the decay to

proceed on mass shell. For off-sh ° amplitudes, we have to make
3d subtractions similar to the ones discussed below. At present
these are not under control even for 3-point functions.

(2) The functional form necessary to fit the data for the 4-point cor-
relators is complicated as can be seen by Jdrawing all the diagrams
(for an example see figure 2). Thus to get reliable fits and extract
the M E we will need a ery large number of configurations.

(3) We need two calculations of quark propagators with sources at
different points as shown in figure 2. This, unlike the first two
issues, is not a significant drawback for it only doubles the amount
of computer time required.



Fig. 2: a) A 4-point diagram and b) its subtraction that contribute
to the amplitude K — 7 on the lattice.

The present approach is to use chiral perturbation theory (CPTh)
to relate the K — wr amplitude to /{ — 7 and K — vacuum. This
is an additional approximation and for Kaons may not be any better
than 50% [9]. Thus, one has to clearly demonstrate the expected chiral
behavior in the M E before reliable results can be extracted.

The lowest order CPTh relates the three matrix elements [10]

2 2
s

(rm|Meyy |1K) = A (r—nﬁy_-—- T+ ) (4.13a)
e d

(ri¥Meps |K) = A ( ’;‘K 5 + (Pr-PK)Y + ...) (4.13b)

(ONess |K) = A((mk-m3)é + ...) (4.13¢)

where A is a constant that includes C,; and Z factors. Our goal is
to extract the value of 4 from the last two off-shell M E which can
be calculated on the lattice. However, on the i.ttice, these operators
mix with operators of different chirality (true only for Wilson fermions
which explicitly break chiral symmetry) and lower dimension operators.
The ME of these lower limension operators have their own factors of 6
and v analogous to eqn. (4.13). For example 3d contributes to (4.13b)
but not to (4.13c) and vice-versa for 3vsd but with different § and ~.
‘Thus, one cannot extract the physical M E i.e. v from eqn (4.13b) ana
(4.13c) by just using the bare operators of eqn. (4.10). One has to
define renormalized operatdrs'(which have the correct chiral behavior)
by making subtractions. ‘These are discussed next.

4 8



4.2c) Subtractions and Contractions

As stated above, we have to include the mixing of operators
0O, ...Og with lower dimension operators. There are two such oper-
ators relevant to this discussion: The dimension 5 operator 3o,, F*“d
and the dimension 3 operator 5d . Both are present in calculations
with Wilson fermions, while for staggered fermions, the remnant chiral
symmetry guarantees that there is no mixing with 3o,, F*“d . There
is only one lower dimension operator for staggered fermions [11] :

0%ub = 157, (1 —'75)(‘:9—“ -9 ,)d = (mg+m,)3d + (mg—m,)3vsd

(4.14)
which is a total derivative and so absent on-shell. The equality (due to
the equation of motion) between the two terms on the right hand side
is still valid on the lattice. It is this form that we transcribe on to the
lattice [11].

The subtractions necessary to define the physical M E are handled
differently by different groups doing the calculations so I will discuss
them later with the results.

There are two types of diagrams that arise in the Wick contraction
of these operators in the transition K* — n*. The one in which all
four Dirac operators are contracted with external quarks are called
“figure 8" diagrams, while in the “eye™ diagrams two of the operators
are contracted to form a clcsed loop. The Af = 2 transition has

2
only eight contraction for degenerate u and d quarks while the A = 1

octet operators have both eight and eye contractions. The eye diagram:
require subtractions as illustrated for 3d in figure 3.

In present calculations, the magnitude of the ME of all the eight
diagrams is comparable. Thus the Al = % rule has to corr~ from a large
contribution from the eye diagrams. These diagrams are, at present,
hard to calculate because they involve twn kinds of subtractions: (u -
¢) to impose the GIM mechanism and the subtractions due to mixing
with lower dimension operators. One of the bottlenecks in present
lattice calculations is a lack of control in the calsulation of these eye

diagrams.



Fig. 3: a) An eye contraction and b) the corresponding subtraction
diagram.

4.2d) Vacuum Insertion Approximation (VIA)

A phenomenological method to calculate the ME is the VIA. In
this approximation, the 4-fermion operators are factorized into 2 sepa-
rate bilinears and a complete set of states is inserted in between. Fur-
ther, the sum over intermediate states is saturated by just the vacuum.
With this method one can only calculate those contractions of the eye
and eight that have 2-color loops. These diagrams breaks into two dis-
joint parts as shown in figure 4. The l-color loop terms can be added
in by hand by using the continuum approximate relation; M(1-color
loop) =~ 3 x M(2-color loop) t.e. Ms =~ Mq/3.

_
A =

Figure 4: 2-color loop diagrams that contribute to VIA

The utility of VIA is twofold. First, MEy ;4 can be calculated
easily on the lattice and second, they have the same chiral behavior
as the physical ME. The second fact states that they have the same
factors of my and m, as the M E, s0 one possible way to reduce lattice



artifacts is to consider the ratio, B, of the two ralculated on the lattice
1.e.
Awlattice
Migttice = Meone. via w5———— = Ment. via B (4.15)
~\‘{iatt|cc VIA

We use this approach to reduce systematic errors and to check
for the chiral behavior in both M E. We also hope that the statistical
errors in the two measurements are correlated and cancel in the ratio.

4.2e) Connection between the Lattice and Continuum Results

Putting the theory on the lattice does introduce an approximation;
the momentum integral is replaced by a discrete sum and the disper-
sion relation for the propagators is modified from p to sin p. The two
approximations can be systematically improved by taking a larger box
size Na, since the allowed momenta on the lattice are TR

The ME are calculated on the lattice at a given value of the bare
=1 is set by some dimensionful quantity like
the rho mass. Given a~! and the lattice size, we can determine the lat-
tice momenta. Since the lattice dispersion relation differs substantially
from the continuum behavior for the gluon and quark propagators 2t
large momenta, we cannot a priori define the renormalization point u
to be X. [t is customary to choose u = } This is just an assumption
and the definition of 4 for a given g is still an opea problem.

The anomalous dimension matrix used to scale the coefficients is
evaluated with a continuum regularization scheme. The ME are cal-
culated on the lattice. Therefore we have to relate the lattice and
the continuum operators at scale 4. These l-loop Z factors are being
calculated in perturbation theory (12| [13] .

Given the scale 4 in physical units, the evolution of the coefficients
proceeds as in the continuum with the experimental values for My
and the quark masses. The only lattice action dependent quantity is
the value of the coupling ¢ at say Mw or equivalently the value of
Ar. This can be related to say Az by l-loop perturbation theory

and then fixed by taking the value of Az from experiments. The

charge g. The latticescalea



evolution of the coefficien*s has strong dependence on the value of A.
For lattice actions with small A; (like the Wilson action) the evolution
is small. The corresponding matrix elements (and the Z factors) have
to be larger than in the continuum to give a scheme independent result.

4.3) RESULTS

I will discuss the results for the Al = } and Al = § amplitudes

from the three groups separately.
4.3a) UCLA group:

Their goal has been to first verify whether the M E show the correct
chiral behavior for Wilson fermions [14] . To check this they look at
the simplest operators, the LL AS = 2 operators arising in K°K?°
mixing and the Al = % one. Their results show a deviation from the
expected chiral behavior m,m as shown in figure 5. Both amplitudes
cross zero for 500 < m, < 700 MeV and change sign. The issue of
whether this is due to finite size effects and a large coupling ¢ has not
been resolved. Given that CPTh is central to the lattice calculation,
we need to understand this feature.

Tlie other results for the LL matrix elements are 1) they agree
with VIA at large quark masses, 2) the M E show reasonable scaling
behavior between § = 5.7 and 6.1, 3) the magnitude of the A = }
amplitude is comparable to the A = i- eight , so eye diagrams are
essential to explain the enhancement and 4) the finite size effects are
significant at small m, and a large statistical sam,!e is needed to get
a clean signal.

To calculate the eye diagrams they implement the GIM cancella-
tion on the lattice. The 3d operator then has the form

3 (me-ma) 3, (416)

which is quadratically divergent (1/a? versus 1/a3) due to GIM. They
calculate the leading term for 83 using perturbation theory. Simi-
larly, they also calculate the coefficient of the dimension 5 operator

a1
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Fig. 5: The K°FKOmatrix element, Az z, as a function of the kaon mass-
squared. The crosses are the results at § = 5.7 on a 10% x 20 lattice
with 18 configurations while squares are from § = 6.1 on a 123 x 33
lattice with 18 configurations [14].

Jo,,F"¥d in perturbation theory. The hope is that there exists a
range of couplings over which this perturbative estimate is valid and
also in this interval the lattice results scale so that one is extracting
continuum physics. The preliminary results for Al = } show that a
lot more work is necessary before one has control over the 3 separate

4.1)



subtractions, so conclusions are lacking. The encouraging feature is
that the magnitude »>f these M E is large and there is room to explain
the Al = % rule.

4.3b) CERN Group:

The CERN group 15, test for the chiral behavior of eight by using
the same operators as the UCLA group. The two groups differ in how
they fit the data to extract the M E. Martinelli et al. sum over the time
position of the operator keeping the location of the » and K fixed at
some large separation 7, which on their laitices is 10. They assume that
the # and K correlators are dominated by a single particle for all posi-
tions of the source. Since tests are not made for different separations 7,
this process cannot reveal whether the separation between the mesons
is large enough. Indeed there is preliminary evidence from the UCLA
group that it is not. Martinelli et al. do not show any check for such
systematic errors and their paper does noi give enough information for
me to judge fairly. The result, however, is in good agreement with the
chiral behavior as shown in figure 6. This is in direct contradiction
with the results of the UCLA group, so both groups are working hard
to resolve the discrepancy.

The scheme proposed by Maiani et al. (16| to calculate the sub-
tracted eye diagrams is as follows: Consider the two M E for a generic
operator (O (here the subscript refers to the dimension of the operator)

< mQq +660g +6s0s| K> = 63 + y2p-k ... (4.17a)
<r'¥dK> =6, + vep-k ... (4.17})

where 64 Oq are the dimension 6 operators of different spin-parity which
are induced by the chiral symmetry breaking Wilson term and Oy is
the dimension 5 operator given above. They calculate both 65 and éa
in perturbation theory. The physical M E is then given by

lim 2o (72 - 6222) (4.18)

me.mg—0 b

where the factor Z; relates the !aitice and continuum operatcrs. o,
they use one extra ME to do one non-perturbative subtraction. The
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Fig. 6 The K°K®matrix element, Ag ., as a function of the kaon
mass-squared. The curve shown is the fit; Ay, = (0.05(2)GeV ?) m? -

0.07(5) m3 15]. The results are on » 10 x 20 lattice at 3 = 6.0 and
with 15 configurations.

above subtraction is in practice done at finite quark mass, so one needs
very good data to cancel all terms on the right hand side and get just
the correct chiral behavior. We have to wait for the first results to see
how well it works.

The present limitation to measuring & using Wilson fermions 1s



the operator 3o, F#“d . With the GIM mechanism this is

Os = (—C-jimt + &mc - my) So,, F*'d (4.19)

CU CU
with the C defined in eqn. (4.9). The multiplication by GIM mass
term makes it a dimensicn 6 operator. However, in the calculation of
‘(—' , there is no GIM cancellation after integrating the ¢t quark so the
operator has a linear divergence. Thus to determine ite coefficient one
has to calculate more M E than shown in eqn (4.17), and then do the

subtraction. Alternately, we need to measure K — wr directly.
4.3c) Los Alamos Group (Staggered Fermions):

The machinery necessary to calculate the ME with staggered
fermions is spelt out in detail in refs. {11]{17| . Here I shail just state
the main ideas and results. To transcribe ¥.ry on to the lattice re-
quired more work because of the mixing of spin and flavor degrees of
freedom. Since these 16 degrees of freedom are spread out over a hy-
percube, the quark bilinears in the operators can be split by up to 4
links that span the hypercube. Our first calculation indicates that the
noise introduced by these extra gauge links in the correlators is not
significant compared with the noise intrinsic to staggered fermions.

Calculations with SF automaticaliy involve 4 staggered flavors.
These flavors are degenerate in the continuum limit and our recent
calculation of the hadron spectrum shows that the symmetry is dy-
namically restored to a good approximation at 3 = 6.2 [18] . Thus we
assume that these flavors can be accounted for by an overall factor of
four.

There is only one lower dimension operator

0" = (myg+m,)3d + (mq~m,)¥vsd (4.20)

that mixes with the dimension 6 operators. The physical operator can
be defined as O - a0’“? with the unknown parameter a determuned
non-perturbatively by requiring 11|

00 - a0*""K) = 0 (4.21)

“.lh



for each operator O in eqn. (4.10). The test that this subtraction
procedure works is that the M E of the subtracted operators show the
correct chiral behavior. This is verified for the penguin eye diagrams
for which we have a stable signal. For the LL eye contractions we don't
yet have a clean signal to draw any conclusions.

Some of the eight contractions for the LL operators do not show
the correct chiral behavior. The reason is not yet understood.

We believe there are large “wrap around” contributions due to
(anti-) periodic boundary conditions that afflict our correlators (see
example in figure 7). These have to be isolated from the signal in all
calculations which have {anti-) periodic boundary conditions in any of
the four directions.

A | =) !

Fig. 7: An eye diagram and its corresponding “wrap-around” contri-
bution.

[n most cases, where we can extract a signal, the lattice VIA works
very well. As shown in the discussion of % , Mg is smaller than its
VIA value. This implies that penguins are irrelevant to explain the
large Al = % enhancement since VIA does not. There is always the
possibility that the behavior we are seeing is just an artifact of large m,
and that things will change when simulations are done with physical u
and d quarks. A test of this will have to wait for some time.

To summarize, the technical machinery necessary to calculate ME
with staggered fermions is set up but the statistical signal is not under
control. The penguins are too small to explain the A = § rule, but
their siﬁd is good enough to make a preliininary statement about ‘7 .



4.4) ¢//¢ : CP Violation in K Decays

The parameter ¢ measures the amount of CP violation in K° K"
mixing:

Kp) = LV (1+~¢) K°> +(1—e)f?°>j (4.22a)
1 -
Ks) = 5 (1~ K> ~(1-¢)K” > (4.22)

where NV is the normalization. The standard KM model, predicts a
second independent CP violating parameter, ¢’ '19|. This arises in the
decay of neutral kaons. The simplest characterization of it is if we
choose a basis in which the Al = } decay amplitude A, is real; then
¢’ is non-zero if the Al = % amplitude has an imaginary part.

Let me briefly introduce the notation. Consider the two amplitudes

<wr(l =0) Xw K°> = Age'®
<wxn(l =2)Hw K°> = Aje® (4.23)

and the corresponding ones for K°. Here 6o and 8o are the rx phase
shifts for isospin O and 2 respectively and the exponential factor in-
corporates the final state interaction of “he two pions. In the lattice
basis both Ap and A; are complex. The two CP violating parameters
measured in experiments are

<x " Nw KL >
<x e~ Nw Ks >
< %% Nw KL >
< x%x0 Ny Ks >

Nez- =

n0o (4.24)

Now using eqns. (4.1,4.23,4.24), one can express n,_ and nng in terms
of ¢ and ¢ as

Ne- = € +~¢

Noo = € - 2¢ (4.26)

with ¢ defined as
] - ‘ |(61—6o) 1_"‘;4_2_ - Ion (4 2!7
¢ \/5_406 { RCAO ! RCAQ } . ‘)



where
W= —t oy — (4.28)

is obtained from Al = % enhancement. At present we also use the
experimental value for ¢

€ = 2.27 x 1073 /4 (4.29)

and calculate only ¢’ on the lattice. Later we hope to measure € and w
from the lattice.

At u ~ 2 GeV, Im}.ss is dominated by the 3 operators Og, 07
and 083

8
ImXepy = Fslsgsgczsg Z (4.30)

where the KM angles have been isolated to define C from C.

In lattice calculations, Ag is not real. In fact the dominant con-
tribution to eqn. (4.27), with X.ss defined in eqn. (4.30), coraes from
ImAy since only em penguins contribute to both Im Ag and Im A,.
Using the experimental value for € and writing all M E as ratios to their
VIA value, one gets the master formula {20] {21} [22]

¢ —a,818283€2385 Ceo ,125MeV 2
£ 1 = 3x 1072 =)
where
C7B7 +3Ce\ B
Qump = 023(S7 81+ 3Cey Be (4.32)

and the B are defined in eqn. (4.15). The M E are calculated using the
physical operatérs defined by eqn. (4.21). The factor, a,m, has been
taken out of C7 ahd Cy. The factor 01, + N, is due to isospin breaking
and its present estimate is ~ 0.27 (5| to 0.4 [21]. It is the B, alone that
we calculate on the lattice.

In the lattic¥ calculation with staggered fermions [22](23] , we have
l'a = u=17GeV. Using my = 4.5GeV, the coefficients are: 55 =

4.19



0.08 — 0.09 (0.12 — 0.15), C7/@em = 0.15 — 0.22 (0.11 — 0.18) and
5g/a¢m = 0.01 — 0.02 (0.01 — 0.03) with the ranges corresponding to
m; = 30 to 70 GeV, A = 0.1 or (0.3) GeV. We assume that Ay = Agrz
for the improved action used.

The calculation was done with 2 values of the quark mass; one a
little heavier than the s quark and the other a factor of 8 lighter. With
this data, GIM subtraction cannot be done on the lattice. One can
regard it as one of two approximations: 1) The ¢ quark mass is equal
to the lattice scale. 1/a, and we take Hefs just below threshold with ¢
integrated out or 2) the contribution of ¢ graphs is small. In fact the
second poinat is demanded by consistency if one assumes the first.

The 4-link part of the operators (fermion bilinear in ¥.s split by
4 links) are left out. They were either too noisy to fit or for eight
contractions were not caiculated due to an oversight. Indications are
that for our my, these are small and to first approximation can be
neglected.

The ME of eight contractions do not fall as mymy for either the
physical operators or their VIA. We don’t have a good explanation
and for the moment assume that the estimates for the ratios, B, are
reasonable. The “penguin” contractions do show the chiral behavior
at heavy masses (heavy-heavy and heavy-light combination of quark
propagators), but the signal is too poor at the small mass to confirm
it. These results are summarized in figures 8a and 8b [24] .

Given all the uncertainties mentioned above (and some more), we
can only point at trends observed in the data; 1) the strong penguins
are suppressed with respect to their VIA value. This decreases the

estimate for ‘1—' . 2) The electromagnetic penguins are enhanced wrt

to VIA and they increases % . 3) The magnitude of the em penguin

contribution maybe comparable to Ms.

Putting in numbers for the ratios B, the final estimate for % is still
(1 —2) x 1073 ( 6.6 to 0.7 of the VIA value) compared to the present
experimental value of 0.0035 + 0.003 + 0.002 [25| . Our goal is to
push the accuracy of the lattice calculation of ME below the combined
uncertainty in the coefficient functions due to Az7z, m, and the KM
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angles. We hope to realize this in the next generation calculation.
Conclusions

The subject material necessary to understand how to calculate M E
from the lattice is extensive. The above discussion should convince you
that not all the issues are fully resolved. We have come a long way
from the first lattice calculations {26] [27] (28] , however the status of
numerical studies is still preliminary. Yet, the prospects of solving some
of the fundamental problems is sufficient lure for a sustained effort. I
hope that a similar review few years from now will have some definite
results.
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MONTE CARLO RENORMALIZATION GROUP

The development of Monte Carlo Renormalization group method
(MCRG) was essentially complete in 1979 with the work of Wilson
‘1] , Swendsen (2] and Shenker and Tobochnik (3] . Prior to this Ma
4] and Kadanoff (5] had provided key ingredients. The method is
therefore relatively new, and furthermore its application to field the-
ories has been carried out only since 1932. In this short period there
has been considerable activity and I shall review the methodology and
summarize the status with emphasis on 4-dimensional gauge theories.
There already exists extensive literature on MCRG and I direct the
reader to it [1][3](6] (7] for details and for a wider exposure. Similarly,
the reviews (8] (9] are a good starting point for background on Lattice
Gauge Theories and on spin systems. The topics [ shall cover are

1) Introduction tc MCRG and its methodology.

2) Renormalization Group Transformations for d = 4 lattice gauge
theories.

3) U(1) Lattice Gauge Theory.

4) [-function and scaling for SU(3) Lattice Gauge Theory.

5) Improved Actions and Methods to calculate them.

6} Improved Monte Carlo Renormalization Group.

7) Renormalization Group inspired Multigrid update.

8) Measuring auto-correlations with block operators.

9) Effective Field Theories.

The main results in QCD from MCRG are 1) the determination
of the J-function and the consequent prediction for the value of the
coupling at which asymptotic scaling sets in and 2) an estimate of
the improved gauge action (10} . These results are not spectacular
in the sense of confirming that QCD is the correct theory of strong
interactions, however they have led 0 a deeper understanding of the
lattice theory and provided a quantitative estimate of the approach to
the continuum limit. [ shall attempt to show that this method is as yet
in its infancy and should be used to tackle a number of problems.

1
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1) INTRODUCTION TO MCRG

Renormalization Group (11} [12] [13] is a general framework for
studying systems near their critical point where singularities in ther-
modynamic functions arise from coherence at all length scales. This
phenomenon occurs in Statistical Mechanics near and on the critical
surface (defined by a divergent correlation length) and in the strong
interactions of quarks and gluons. The MC RG method was developed
to handle this problem of infinitely many coupled degrees of freedom
so that sensible results can be obtained from finite computers. There
are two central ideas behind MCRG: One is to average over these in-
finitely many degrees of freedom in discreet steps preserving only those
which are relevant for the description of the physical quantities of inter-
est The interaction between these averaged (block) fields is described
by an infinite set of couplings that get renormalized at each step. In
QCD this discrete reduction is carried out until the correlation length
is small enough so that the system can be simulated on a lattice with
control over finite size effects. The second idea is that singularities in
the coupling constant space are much softer even though the correia-
tion length diverges on the critical surface. In section 6.1, I show that
some of elements of the linearized transformation matrix diverge. But
this happens only in the limit of infinite range couplings. Thus these
elemnents should not be important if the fixed point is short ranged.

The MCRG methods discussed here have a fundamental assump-
tion that there exists a fixed point of the transformation and that this
is short ranged. Thus, even though an infinite number of couplings
are generated under renormalization, we shall assume that only a few
short range ones are sufficient to simulate the system at a given scale
and preserve the long distance physics. Present results suggest that
the fixed point for QCD is short ranged.

1.1) Standard Monte Carlo:

Consider a magnetic system cansisting of spins (s} on the sites
. of o d - dimensional lattice L deacribad by a Hamiltonian H with all

v, }
-



possible couplings { Ka}. All thermodynamic quantities can be found
from a detailed knowledge of the partition function

Z = Z e H = }: eKaSa (1.1)

where S, are the interactions. In Monte Carlo, configurations of spins
on the original lattice are generated by the Metropolis 14| , heat bath
(15] , molecular dynamics alias Microcanonical (16| or the Langevin
(17) (18] algorithm with a Boltzmann distribution e=H = eKaSa 4]
thermodynamic quantities are given as simple averages of correlation
functions over these “importance sampled” configurations. The accu-
racy of the calculations depend on the size of the statistical sample and
the iattice size L used. Both these quantities depend on the largest
correlation length € in the system. Near the critical temperature, T,
associated with second order phase transitions, the correlation length
and thermodyramic quantities like the specific heat diverge as functions
of (T — T.) with universal critical exponents that have been calculated
for many systems either analytically or by Monte-Carlo using finite size
scaling (19] or by the MC RG method. Because £ diverges at T., long
runs are needed to counter the critical slowing down and the lattice size
has to be maintained at a few times £&. The problem of critical slowing
down is addressed by analyzing update algorithms (Metropolis vs. heat
bath vs. Microcanonical vs. Langevin with acceleration techniques like
multi-grid [20] , fourier acceleration [21] etc). The optimum method is,
of course, model dependent and has to take care of metastability (local
versus global minima) and global excitations like vortices, instantons
etc that are not efficiently handled by local changes. This last feature
has not received adequate attention, To control the second problem in
standard Monte Carlo, effects of a finite lattice especially as § — oo,
finite size scaling [19] has been used with success. In this review [ shall
roncentrate on MCRG. First [ shall describe how universality and
scaling are explained by the renormalization group.

The renormalization group transiormation (RGT) is an operator
R defined on the space of coupling constants, { K,}. In practice the
RGT is a prescription to aveiage spins over a region of size b, the scale

'
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factor of the RGT, to produce the block spin which interacts with an
effective theory H' = R(H). The two theories H and H! describe the
same long distance physics but the correlaticn length in lattice units
¢ — $. If this RGT has a fixed point H* such that H* = R(H*),
then clearly the theory is scale invariant at that point and £ is either
0 or co. An example of a trivial fixed point with § = 0.is T = oo.
The interesting case is £ = oo, close to which the theory is governed
by a single scale {. I will discuss this assumption of hyperscaling,
i.e. a single scale controlling all physics, later. If this fixed point is
unstable in 1 direction only (this direction is called the Renormalized
Trajectory (RT)), then non-critical H close to H* will flow away from
H* along trajectories that asymptotically converge to the RT. Thus
the long distance physics of all the trajectories that converge is identical
and is controlled by tne RT. Similarly, points ¢ away from H*® on the
oo —1 dimension hypersurface on which £ = oo (the critical surface) will
converge to H*. The fact that the fixed point wiih its associated RT
control the behavior of all H in the neighborhood of H* is universality.

Next, consider a non-critical H that approaches H* along the RT.
Thermodynamic quantities depend on a single variable 1.e. the distance
along the RT. This is scaling. Corrections to scaling occur when H
does not lieon the RT. These are governed by the irrelevant eigenvalues
of the RGT which give the rate of flow along the critical surface towards
H* and, for H not on the RT, the rate of convergence towards it. The
relevant eigenvalue gives the rate of flow away from the fixed point along
the unstabie direction (RT) and is related to the critical exponent v.
This terse exposé ends with a word of caution; all these statements
have validity “close” to H"*.

1.2\ Standard MCRG Mathod

In the MCRG method, configurations are generated with the
Boltsmann factor eXeS« as in standard Monte Carlo. The RGT,
P(s!,4), in a prescription for averaging variables over a cell of dimension
b. The'blocked variables {s'} are defined on the sites of a sublattice
L' with lattice spacing b times that of L. They interact with a priori
undetermined couplings {K'!}, and the configurations are distributed



according to the Boltzmann factor e H' je.
e~ H' (Y = Z P(s',s) e~ HlO (1.2)

All expectation values, with respect to the Hamiltonian H!, can be cal-
culated as simple averages on the blocked configurations. The blocking
is done n times to produce a sequence of configurations distributed
according to the Hamiltonians A™. They all describe the same long
distance physics but on increasingly coarse lattices. The fixed point
H*, the RT and the sequence of theories, H", generated from a given
starting H depend on the RGT.
The RGT should satisfy the Kadanoff constraint

1

Y P(sts) =1 (1.3)

independent of the state {s}. This guarantees that the two theories
H and H! have the same pa-tition function. The RGT should also
incorporate the model's symmetry properties; a notable example is the
choice of the block cell in the anti-ferromagnetic Ising model. Usually,
there exists considerable freedom in the choice of the RGT. In fact
many different RGT can he uvsed to analyze a given model. In such
cases a comparison of the universal properties should be made and
the RGT dependent quantities isolated. I defer discussion on how to
evaluate the efficiency of a RGT to section 2.5.

1.3) Methods to Calculate the Critical Exponcnts:

There are three methods to calcuiate the critical exponents from
expectation values calculated as simple averages over configurations.
In both there is an implicit assumption that the sequence H" stays
close to H*. The more popular method is due to Swendsen (2| 7! in
which the critical exponents are calculated from the eigenvalues of the
linearized transformation matrix TJy which is defined as

. _ OKY _ 9K} 3(S})
207 5K3T T A(S)) aKyT

(1.4)



Each of the two terms on the right is a connected 2-point correlation

matrix |
n - a:‘sg"‘ - (SI\S'\*\\ /Sn\/sn-\\ -
ef = 3K;~1 = Og03 1 T 155735 . (1.5)
and
ryn —_ 3/5:'/ (Engn reny/Qn
D».'If- = aK" = S”S@> s SU}SB>' (1.6)
A

Here (SD) are the expectation values on the n‘* renormalized lattice
and K} are the corresponding couplings. The relevant exponent v is
found from the leading eigenvalue Ay of 77, as

Inb .
v = l—-ﬂ—x: (1.7)
where b is the scale factor of the RGT. The magnetic exponent is given
by replacing A¢ by Ay in Eqn.(1.7) where \j is the largest eigenvalue of
T constructed from odd interactions. | have restricted the discussion to
the special case of one relevant eigenvalue. In general, systems can have
multi-critical points with more than one relevant interacticn. Next, the
eigenvalues which are smaller than one (called irrelevant) yield expo-
nents that control corrections to scaling. An eigenvalue of exactly one
is called marginal. Lastly, there is an additional class of eigenvalues,
the redundant eigenvalues, that are not physical. Their value depends
on the RGT, so one vray to isolate them is to repeat the calculation
with a different RGT. [ shall return to these in section 2.5.

The accuracy of the calculation of exponents improves when they
are evaluated close to the fixed pcint. This can be achieved by start-
ing from a critical point and blocking the lattice a sufficient number
of times 1.e. H" for large n. [n this case the convergence is limited by
the starting lattice size and how close the starting H¢ is to H*. Ths
method can be improved if the renormalized couplings { K"} are de-
termined starting from a known critical Hamiltonian. We assume that
the couplings fall off exponentially with the range, so that H* can be
approximated by a small number of shor. range couplings. For calcu-
lations in models for which the critical coupling is not known exactly,



when using a truncated 4" the system will flow away from H* under
blocking. This flow away from 4" can be avoided by first putting H
back on the critical surfac: by Wilson's 2-lattice inethod described in
section 1.4. In sections 5 and 6, [ describe a few methods to calculate
the renormalized coupiings.

A second possible improvement is to tune the RGT so that the
convergen<e to H * from a starting H¢ take. fewer biocking steps. This
is discussed in section 2.5

The practical limitation te the calculation of the exponents is that
the two matrizes U and D can only be deterwined in a truncated sub-
space. Further, in order to set up T, the matrix D has to be inverted.
Thus the determination of exponente has two types cf truncation er-
rors: The truncated T differs focin the true T due to the inversion of a
truncated D and because we diagonalize a truncated T. These errors
will be analyzed in detail in section 6.

The second method to calculate the leading relevant exponent is
due to Wilson [6]. Consider once again the 2-point connected corre-
lation function (the derivative of an e:pectat.on value) (S;Sé)c with
J > ¢. Expand S} in term of the eigenoperators O! of the RGT.
Close to H* the level dependence in O, (equivalently in the expansion
coefficients ¢!, 5) can be neglected. Then to the leading order

(S4She ~ A" can(0:S)) (1.8)

where A, is the leading relevant eigenvalue and corrections are sup-

pressed by (f;)"‘. Thus for each a and 3, the ratio é%é-ﬁé-f-) gives
an estimate for the leading eigenvalue A;. This method wor’ks even
when the starting coupling is not exactly critical. The accuracy of the
method improves if j--1 is large (since non-leading terms are suppressed
geometrically) and if used close to the iixed point.

[ have compared the results for the two methods in the d = 2
lsing model [22] using a 64% lattice and blocking 3 times start-
ing from a 44 term Hamiltonian H? Fort = 1 and j = 2,34,
A¢ = 2.00(3),2.01(2) and 2.01(1), while A, = 3.658(5),3.660(5) and
3.663(5). Swendsen's method gave 1.998(2),1.993(3),1.990(3) and

5 7



3.666(1), 3.662(2), 3.66. {2) respectively and thus seems slightly better.
However, the trends leave room for Wilson’s method becoming better
for large j. So, further tests in other models need to be made.

The third method ~ Wilson’s 2-lattice method - is described in
section 4 around eqn (4.3).

The calculation of + from the leading eigenvalue does not assume
hyperscaling. The relation between v and the specific heat index o
t.e. a = 2 — vd does. A known cause oi hyperscaling violations are
dangerous irrelevant operators [19]. In the presence of these, universal
scaling functions have a power-law singularity m%-)-;- in the limitu — 0

where u is 1=-elevant scaling field and ¢ is the corresponding scaling
exponent cenormalization group approach is preserved but the
hyperscalic.  «is modified to a = 2~vd + u|p|. However, to predict a

we need u, the power with which the scaling function diverges. It is not
known huw to calculate this with MCRG. A side remark: in applying
finite size scaling analysis to this case (with an enhanced definition of
the scaling functions for the specific heat data), we need to specify u
to study the divergence in the limit u — 0. But scaling fields are a
function of the RGT. So a MC RG calculation is necessary to identify
it. Thus at present it is an open problem.

On the critical surface the 2-point correlation functions (like in
Eq. (1.5) and (1.6)) diverge in the thermodynamic limit. However,
their ratio is the rate of change of couplings and these are well behaved
provided one considers only short ranged correlation functions as will be
shown later. The reason that MCRG is assumed to have better control
over finite size effects is that if H* is short ranged then a truncated
T35 is sufficient to determine the leading eigenvalue. Also, the finite
size contributions to the elements T], fall off like the couplings 1.e.
exponentially. Thus reliable estimates may be obtained from srnall
lattices.

QCD: At the tree level, the coupling ¢ in QCD does not renormal-
ize and the fixed point is at ¢y4,¢ = 0. At 1-loop the leading operator
has eigenvalue equal to one, is relevant and the fired point changes
from simple gaussian to being asymptotically free and non-trivial. A
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special feature of asymptotic freedom is that even though the leading
eigenvalue is one there is a flow away from the fixed point at a con-
stant rate. At 2-loop, this operator becomes truely relevant :.e. with
eigenvalue > 1. Perturbation theory also tells us that leading scaling
violations are ~ 1/k?, so the second eigenvalue should be ~ 1/b% for a
RGT with scale factor b. Present studies [23] show that the leading
eigenvalue is close to 1 and the second near 1/b%. However, the statis-
tics are poor 2nd the calculation was done at large gpqar.. Thus reliable
quantitative results are lacking.

1.4) Wilson’s 2-lattice Method to Find a Critical Point:

The critical temperature is not known analytically for most mod-
els. Also, couplings calculated after blocking may not be critical due
to truncation and statistical errors. The following method can be used
to put H on to tie critical surface.

Consider MCRG simulations L and S§ with the same starting cou-
plings K2 but on lattice sizes L = " and § = b"~1. If KQ is critical
and after a few blockings the 2 theories are close to H*, then all corre-
lation functions attain their fixed point values. For non-critical starting
H, expand about H* in the linear approximation

2
(L3) = (587" = gz (LT) = (ST71) AK;
= ((LTLY)e - (S27'59)e} AK} (19)

to determine AK?2. To reduce finite size effects the compared expecta-
tion values are calculated on the same size lattices. The critical coupling
is given by

" K: = K2 - AK? (1.10)

and this estimate should be improved iteratively.
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2: RENORMALIZATION GROUP TRANSFORMATIONS
IN 4-DIMENSIONS

It has been inentioned before ‘that there is no unique RGT for a
given model. There are at present four different transformations that
have been proposed for 4-dimensional lattice gauge theories. In each
of them the block link variable is ¢onstructed from a sum of paths
£ = Y paths. This sum of SU(N) matrices is not an element of
SU(N), and the new block link matrix is selected with the distribution

P(Uy) = ePTrWt (2.1)

where p is a free parameter to be optimized. The advantage of taking
the sum is that such a RGT preserves gauge invariance. The 4 RGT
are (in cronulogical order)

AN
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Fig. 1: Wilson’s 6 = 2 transformation. Four of the eight links that
connect two hypercubes are shown. The lattice is locally transformed
into the Landau gauge since the ends of the links are not tied.

3.1) b = 2 by Wilson [1]: The geometry of the transformation
is shown in Fig. 1. The block ceil has 2‘ sites of which any one can be
defined to be the block site. There a.re '8 links between two block sites
in any given direction of which 4 are shown in the 3-dimensional projec-
tion. In this method the gauge has to be fixed on the 15 sites that are
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g +“ll . _l +d&[ r———— +d3.-c-

A B A B A B

Fig. 2: Swendsen’s b = 2 transformation. a) The original transforma-
tion that connects sites A and B by the average of the straight 2 link
path and the six staples. b) The generalized transformation which in-
cludes paths of arbitrary size with corresponding strength parameters
o, that have to be determined by optimization.

Ue B(O,I,I,I)

((

10,0.0,3)

c(l,-!,O,l)

4 -DIMENSIONAL HYPERCUBIC LATTICE

Fig. 3: The geometry of the b = /3 transformation. The 4 block
links originating {rom each block site are the body diagonals of the
four 3-cubes. The six paths used in the construction of the block link
between (0,0,0,0) and (0,1,1,1) are shown. Path Uy is ignored.
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not the block site. This local gauge fixing is done to take into account
the fact that the ends of the 8 links ar- at different sites. The ansatz
Wilson used was to transform the hypercube locally into the Landau
gauge. The process of fixing the gauge is slow and a disadvantage of
the method. The gauge fixing can be avoided by extending the 8 links
into 8 paths that run between the block sites. and include those links.
This modified construction violates cubic rotational invariance because
of the particular choice of the ordering of the paths within the cell. In
either form only f—g- degrees of freedom are used in this approximate
averaging at each level. Since Wilson’s preliminary investigation, this
method has not been used because the next two methods are simpler.

2.2) b =2 by Swendsen [24] : The transformation in its initial
form is shown in Fig. 2a. The more general version is shown in Fig. 2b
where the parameters a, have to be determined. In this construction all
paths start and end at the block sites. Thus no gauge fixing is necessary
and arbitrarily complex paths can be included. However calculations
show that an optimization of the parameters has to be done to improve
the convergence. [ shall discuss this tuning later.

2.3) b = V3 by Cordery, Gupta and Novotny (25] : This
transformation is specific to gauge theories in 4-dimensions and is based
on the fact that the body diagonals of the 4 positive 3-cubes out of a
site are orthogonal and of length v/3. The geometry is shown in Fig.
3 and under one RGT the new lattice is still hypercubic but rotated
with respect to the old basis. Also, the box boundary becomes jagged.
This can be undone by a second application of the RGT with different
basis vectors. So the original box geometry is recovered after every
scale change by a factor of 3. The construction of the paths requires
no gauge fixing, all paths are of equal length (no free parameters to be
tuned) and 3§ degrees of freedom are used at each step. Further, the
tlock cell consists of the block site and its 8 nearest neighbors. This
provides an easy and natural way to include complex matter fields and
block them simultaneously. This makes it the transformation of choice
to study the SU'(2) x U'(1)y theory. It is also better suited to the
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termion block diagonalization process of Mitter and Schilling [26] as
is explained in section 5.10. In practice, for both SU(2) and SU(3), this
RGT has consistently shown good convergence at strong and at weak
coupling. It is therefore recommended.

2.4) b = v2 by Callaway and Petronzio [27] : The construc-
tion of paths shown in Fig 4a is based on a planer structurei.e. z - y
and z — ¢ planes are treated separately at all blocking steps. No gauge
fixing is required but only 2 paths are used in the averaging i.e. in Eq.
(2.1). This drawback of using only 2 planar paths can be improved
by including nonplanar paths as shown in Fig. 4b. Because this RGT
has the advantage that b6 = /2 is the sraallest scale factor possible, a
serious test should be made.

Fig. 4. The geometry of the b = /2 transformation. a) The two
paths in the original proposal. b) Additional 4-links paths to make the
transformation non-planar.

2.5) Optimization of the RGT: In addition to the freedom of
he choice of the RGT, there are the free parameters p and a; intro-
duced above. Hasenfratz et al. (28] have shown that the convergence
of the original b = 2 Swendsen transformation is improved if p is tuned.
[ will give a qualitative description of how this works. Consider a set of
RGT that are a function of the continuous parameter pi.e. R,. Start-
ing from a given point H, the blocked theories generated are described
by H!(p). They all have the same long distance behavior as can be
checked by measuring expectation values of large Wilson loops. [n fact
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there is an effective Wilson action H.rs which will have the same long
distance behavior for one observable. The short distance behavior of
H!(p) will be different and for scme values of p, the (plag), will be
larger than the (plag), corresponding to H.ss. I have checked that
this is the case for the original Swendsen transformation when p = oo
and g? < 1. Lowering p reduces the blocked (plag),, making it agree
better with H,ry. Thus, the tuning makes the short and long dis-
tance behavior correspond better to the same approximate H.sy. This
leads to improved matching (using small loops) in the 2-lattice method
to calculate the f-function. Hasenfratz et al. (28] estimate p using
perturbation theory and by Monte Carlo using the criterion of early
matching of block expectation values in Wilson’s two lattice method.
They found that the best value at ;65- = 6.0 given by Monte Carlo (~ 35)
does not agree with the value found using perturbation theory (~ 15).
So as of now this optimization is still by trial. Also, pope depends on
the coupling ¢g. This implies that the RT cannot be pulled close to th.
Wilson axis globally by this optimization. So the usefulness of such
optimization is limited to the 3-function calculation. The parameters
a, can similarly be optimized using the same improvement criterion.

Gupta and Patel (23] used p = o0 in the v'3 RGT. This is
equivalent to choosing the matrix U such that Tr U )_ is maximized
(the é-function construction). They find that even with this choice
the small block Wilson loops are more disordered than for an H,y;
determined using large loops. Thus p = oo is optimal by the above
criterion. The v3 RGT has shown good convergence properties and
provided rehable results with p = oo.

The freedom to choose the RGT and further tune the parameters
a, and p leads to the question: What are the criteria by which to decide
what is the best RGT? [ will first address the question — — what is the
effect of changing the RZT on the fixed point and on the RT? Postulate
'29] (30| : Changing the RGT moves the fixed point on the critical
surface but only along redundant directions. A simple argument is as
follows: Consider two different RGT, R, and R;, and their associated
fixed points H and H;. There are no non-analytic corrections to



scaling at either fixed points and the associated RT. If these two points
are distinct, then H; flows to H{ under R,. Consequently there are
no scaling violations along the flow. This is by definition a redundant
direction. This implies that the associated RT differ by redundant
operators.

The presence of redundant operators does not effect the nhysics,
but it can obscure results. The redundant eigenvalues are not physical,
depend on the RGT, and can be relevant or irrelevant. If a relevant
redundant operator is present then the flows will not converge to the
H* or to the RT. Thus it is desirable to pick a RGT for which the
redundant eigenvalues are small (31] . Similarly, the coefficients of
the leading irrelevant operators should be reduced. To some extent
the irrelevant basis vectors are a function of the position of H*, so
it is possible to simultaneously reduce the two coefficients. In QCD,
there is an additional freedom —— all possible Wilson loops form an
overcomplete set. Therefore, in order to tune the RGT and to find an
efficient improved action, it is necessary to determine the operators that
can be eliminated because of the overcompleteness and the redundant
combinations.

Swendsen (32| has conjectured that the fixed point can be moved
anywhere on the critical surface by tuning the RGT. In particular, if
the simulation point is made H*, then that RGT is optimal. There is
some support for this in spin systems, where by adding terms to the
RGT, one can successively kill terms in the renormalized Hamiltonian.
There are two things to check here: first whether the coefficients of .he
RGT terms fall off like the couplings, i.e. exponentially, and second
whether the long range untuned couplings continue to fall off at least
as fast a8 before. In thed = 2 Ising model we find that all the couplings
(other than the nearest-neighbor) in a 3 x 3 square of spins can be made
small without affecting the long range covpiings (33| . We have yet to
test whether this is true in more complicated models which have non-
analytic corrections to scaling.

The quantity to optimize in numerical simulations is the update
complexity (embodied in the RGT or the hamiltonian) versus the de-



crease in the coefficient of the leading irrelevant operator. Swendsen
132| found that the eigenvalues for the d = 3 Ising model are signifi-
cantly improved with a tuned 10 term RGT. A simulation that used
a 10 term truncated renormalized hamiltonian determined by him did
not work as well. I believe (based on tests in the d = 2 Ising model
'22]) that this occurred because the Hamiltonian had large truncation
errors and was not much closer to the H* for the simple majority rule
RGT. There is one additional anomaly in this approach: Tuning the
RGT improved the thermal expouent but the resuits for the magnetic
exponent deteriorated in quality. This is surprising because the fixed
point is at zero odd couplings and these remain unchanged in tuning
the RGT. The previous postulates (movement in redundant directions
only versus killing all long range interactions), if true in general models
are in conflict and the present results are ambiguous. Consequently,
this subject is being explored further [33].

The criterion for an optimum RGT is to make the * and the RT
as short ranged as possible. In critical phenomena, the improvement
can be quantified by measuring the convergence of the exponents as
a function of the blocking level. In QCD we are interested in contin-
uum mass-ratios etc. These have 3o far been hard to measure so the
improvement cannot be judged. The behavior of the RT for QCD is
discussed at the end of section 5. For the moment let me conclude
this section with the statement that we doa't know how to optimize
MC RG systematically and this subject is under investigation.

3: U(1) LATTICE GAUGE THEORY:

This model is a trivial limit of an eventual goal: To understand
spontaneous symmetry breaking in the SU(2) x U/(1)y theory of weak
interactions. U(1) has many of the technical complications one expects
in the full theory, for example, large finite size effects, weak 1** order
transitions with a possible tri-critical point (TCP) etc. So it is good
starting place to test methods.



The phase diagram of the theory defined by the action

= BZcos@w + 72c0829uu (3.1)

where 3 (4) is the charge 1 (charge 2) coupling is known to have a
phase boundary separating the confining (strong-coupling) phase from
the spin-wave (QED) phase (34] [35] [36] . The order of the transition
along the boundary DXZ in Fig. 5 is not resolved. In particular it is
not known if the gradually weakening first order transition along CD
ends in a tricritical point, and if so what is its location. Evertz et al. [35]
claimthat the location of the TCP isat § = 1.09£0 04 and v = -0.11%
0.05 on basis of a scaling analysis of the discontinuity in the energy AE.
The mechanism driving the transition are topological excitations [37]
(38] , i.e. closed loops of monopoles, whose density is observed to change
at the transition (39] (40] . This change in density is caused by a growth
in the size of the largest monopole loop which begins to span the finite
lattices used in the calculations (39][41] . Thus, the usual difficulty of
finite size effects near a TCP in determining the location of the TCP
ty an extrapolation of the latent heat AE along the phase boundary
is here compounded by the presence of monopole current loops that
are closed due to the lattice periodicity (39|(41). Thexe contribute a
fake piece to the AE which makes the extrapolation unreliable. One
solution is to calculate and then subtract the contribution of these loops
from A E before making the extrapolation. The more reliable method
is MCRG and in particular the 2-lattice method discussed in section
1.2 should be used to locate the TCP. A word of caution for the U(1)
model when using this method: There is a large shift in the critical
coupling as a function of the lattice size (39| and consequently in the
contribution of the fake monopole loops. One should therefore use a
starting coupling for which both lattice simulations are on the same
side of the transition.

The status of the order of the transition from M CRG calculations
using the T° mattix is as follows: Along the Wilson axis {39 only one
relevant exponent is found using the v3 RGT. Furthermore, the value
of the exponent showed a variation with 3. At g = 1.0075, v = 0.32
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'Fig. 5: The phase diagram of the U(1) gauge theory in the two
"™ coupling plane. The order of the transition along the line DX Z needs
‘to be resolved.



and this value changes to v ~ 0.43 (or even the classical value 0.5)
at 0 = 1.01. One explanation is that the TC P lies above the Wilson
axis and in simulations along the Wilson axis one measures first the
tricritical exponent and then the critical one after going through the
cross-over. The same conclusion is also reached in two b = 2 MCRG
studies [42]) {43] which extended the calculation to non-zero v. Thus
the only discrepancy between the MCRG studies and finite size scaling
analysis is the precise location of the TCP.

The present status of the nature of the transition is confused. In
all MCRG calculations in which the exponents are derived from the T
matrix, one finds evidence for a second order transition on and below
the Wilson axis. However, recently Decker et al. [44] have used the
2-lattice method (see eqn 4.3 in section 4) to cilculate the leading
exponent for a number of values of 4 along the transition line and find
the transition to be first order. We need to resolve this d.screpancy if
for no other reason but to understand the methods.

Our goal is to know whether there exists a non-trivial fixed point
for the SU(2) x U(1)y model at which a continuum field theory can be
defined. As the previous discussion shows, understanding even a simple
limit model has been hard. To settle the important physics question
requires considerable more work.

4: 0-FUNCTION AND SCALING FOR SU(3)
LATTICE GAUGE THEORY

The non-perturbative g-function tells us how the lattice spacing
goes to zero as gyare — 0. Since on the lattice all dimensionful quanti-
ties, like masses, are measured in units of the lattice spacing a, we need
to know how a scales in order to take the continuum limit. One op-
tion is to use the 2-loop perturbative result provided it is demonstrated
that this is valid at values of gy, Where the calculations are done. The
other is to measure the non-perturbative 3-function. Since the value
of gusre At which asymptotic scaling sets in is not a priori known , the
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Fig. 8: The evolution of actions under a RGT. Due to long-distance
matching, the correlation length on the two starting actions { K4} and
{K 8} differs by the scale factor b of the RGT.

calculation of the non-perturbative §—function is necessary.

There are two methods for calculating the non-perturbative J-
function directly.

4.1) MCRG using Wilson’s 3 latiice method [1](3]: There
are 2 groups who have used this method for SU(3); one with b = v3
RGT (48] and the second (28] with b = 2 proposed by Swendsen
'24]. The outline of the mathod is: First a system of size L = (b")¢
is simulsted with couplings K2 and the expectation values of Wilson
loope are calculsted on the criginal lattice and the n block lattices. A
second system of size S = (6"~ ')9 is then simulated with couplings
KB chosen judiciously. Again the expectation values are calculated
on the n tattices. The expectation values from the two sirnulations
are then compared on the same size lattices, i.e. the ones {rom the
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larger starting lattice L blocked one more time than those from the
smaller lattice. The couplings K7 are adjusted (which requires a new
simulation) until there is matching at the last, nth, level. In practice
it is sufficient to do two simulations S, and S; which bracket L and
then use interpolation. The test for convergence of the two theories L™
and S™~! is that the expectatiuns values should match simultaneously
at the last few levels, The ideai situation is shown in the coupling
constant space in Fig. 6. At matching, the correlation length on L
(starting couplings K2) is larger than on S (KZ) by the scale {actor
b. If the starting trajectory is taken to be the Wilson axis (or any 1
parameter line specified by K) then the value of the -function, Aj,
for a scale change b is (K4 ~ KP). Note that finite size effects are
minimized since the comparison is on approximately the same physical
size lattices when matching occurs.

There is a one to one cor. es;:«ndence between the value of the
couplings and the expectation values of Wilson loops. Under the as-
sumption that the fixed point action is lucs: (at any scale a few short
range couplings are sufficient to characterize the action) matching the
expectation values of a few small Wilson loops is sufficient to guarantee
that the two actions are equal. Finite size effects in expectation values
are irrelevant on blocked lattices that match because then the two the-
ories are approximately identical and under further blocking continue
to converge to a common trajector;. Thus it is suificient to require
that matching first take place on lattices which are large enough to
accom'nodate the important couplings. Thereafter, the check can be
on a 14 lattice too! It is the range of the couplings that controls finite
size effects in MCRG and not the correlation length and this range
falls off exponentially even on the critical surface. This is why MCRG
has good control over finitc size effects and is a powerful method.

For the simple plaqheite SU(3) action with Kp = 9%-. asymptotic
scaling is defined by the 2-lcop perturbative §-function,

o _ oo st (4.1)



The quantity calculated using MCRQG is,

_ _o(8g7?%)
AB = - 3] inb (4.2)

i.e., the discrete O-function at Kp evaluated for a scale change b.

This 2-lattice method also gives the thermal exponent v for tran-
sitions governed by a fixed point k*. Let the RT be parameterized by
K, then under 2a RGT

(K*- K*) = b% (K' - K*) (4.3)

where the flow is from K! to K2. So, from a sequence of matching
couplings one can determine v and K°.

The results for A3 from the b = /3 calculation [45] are shown
in Table 1, while those for 6 = 2 are shown (28] in Table 2. The
global data is shown in figure 8. There is clear evidence of a dip at
a’-’gw 6.0 which is caused by the end point of the phase transition line
in the fundamental-adjoint coupling space. The conclusion cf these
calculations is that there is no asymptotic scaling below 6/g2> = 6.1,
Second, even though the results for 6/g3 > 6.75 have large statistical
errors, they consistently fall below the 2-loop value.

For the v/3 transformation we have made a finite size test (46|
The matching is done for a starting (9v/3)* lattice at 6/¢% = 6.75 with
94 lattices. The results for AJ are 0.42(2),0.47(1),0.42(1),0.44(2) for
matching on the 3v/3,3,v3 and 1 block lattices respectively. These
values are consistent with previous numbers and show that the ob-
served oscillations are a function only of the number of times biocking
has been done and not on the starting lattice size. Also, note that the
result on the 4'» and additional step falls roughly in between the pre-
vious two. This supports our claim that convergence is oscillatory and
asymptotic. For this reason, when using 9* starting lattices, we quote
the mean value from matching on the (v/3) and the 1* lattices as our
best estimate, and for error we give the spread. This is much larger
than the statistical and systematic errors in matching a few small loops
on a given level,

)
T
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Starting Matching Matching Matching 2-loop
9¢ Krp on 3¢ on (v3)* on 1% Aj
6.0 .337(5) .323(5) .308(6) .489
6.125 .387(5) .376(5) .351(6) 488
6.25 421(4) .424(5) .401(5) .488
6.35 .431(4) .452(5) .445(9) 487
6.45 .432(4) .464(6) .423(12) .487
6.3 .435(4) .464(6) .449(15) .487
6.75 .430(4) .485(5) .443(9) .485
6.75* .42(2) A47(1)- .42(1) 44(2)*
7.0 42(2) 49(1) .42(2) .484
7.25 41(2) 51(2) .46(2) .483
7.50 38(3) .49(2) .42(2) 482

Table 1: The values of AJ for b = /3 RGT from matching at different
levels of blocking [46] . The couplings are for the starting 94 lattice
along the Wilson axis. The matching K on (3v/3)* were determined by
linear interpolation and the errors are based on a 1o fit. For Kp > 6.75,
the systematic errors may be larger than the estimates. Also shown are
the values of A corresponding to asymptotic scaling. The results at
6.75+« are using a 9v/3 starting lattice, so there is an extra level of
blocking for which the result is shown in the last column.

The results using the b = 2 RGT proposed by Swendsen and em-
bellished with an optimized kernel are shown in table 2. For compari-
son, the 2-loop result is A3 ~ 0.61. The matching lattices used in the
calculation are L = 16% and § = 84.

Wilson's 2-lattice method can also be used to measure the AJ for
a theory with dynamical fermions. All the steps are the same once the
configurations are generated with the full action. There are two impor-
tant differences: 1) in this case the couplings are not expected to fall off
as fast as for the pure gauge theory, so larger loops may be necessary
to obtain reliable matching [31|. 2) there is a second parameter, the
quark maas that has to be fixed to the same physical value on the 2
lattices. A naive solution would be to use perturbation theory which



Kr | b= 2 MCRG method b = 2 l-loop Ratio method |
6.0 0.35(2) 0.36(3)
6.3 0.43(3) 0.45(3)
6.6 0.55(9)
5.9 0.51(6)
732 0.51(7)

Table 2: The values of A3 for a scale change of b = 2. The results
are from Bowler et al. [24]. The 2-loop perturbative result is 0.61. The
matching is done on starting lattices 164 versus 84,

unfortunately does not work well at ¢ < 1. The other possibility is to
match a physical quantity like the r “0 mass extrapolated to zero quark
mass. This is beyond our present computational power

4.2) Loop ratio method [47] [28]:

This method is based on the fact that the ratios of Wilson loons
rhat cancel the perimeter and corner terms like

W (k, 1)

R(s,5,k,1) = W)

where s +j5 = k+1 . (4.4)

satisfy an approximate homogeneous renormalization group equation
R(2¢,25,2k,2l,9,,2L) = R(s,5,k,l,g,L) . (4.5)

Using Monte Carlo data for ratios calculated on 2 lattices of size 2L
and L, with couplings go and g, respectively, gives the the desired
answer A3 = (8/g3 — 6/93) for b = 2. Caveats: Eq. (4.5) is correct
only as s,),k,l — oo, otherwise there are corrections due to lattice
artifacts. The quality of numerical results for large ¢, 5, k, ! are limited
by statistics. To confirm the reliability of the resuits, we should show
that the value of A3 converges to a constant as a function of loop size.

The contribution of lattice artifacts can be reduced in perturba-
tion theory. To do this consider Eq. (4.5) for a linear combination



of loop ratios with coefficients a;. To determine these a;, use the ex-
pectation values of loops calculated in perturbation theory and require
that AB = O (tree-level), 0.579 (i-loop) .... Having determined a; per-
turbatively, use the monte carlo data for Wilson loops to calculate the
non-perturbative A3. The limitation of this improvement approach is
that if two (or more) ratios representing different scales (say 1+ = 1 and
4) are used then the difference in statistical errors becomes a prob-
lem. Second, at weak coupling each ratio roughly satisfies Eq. (4.5)
so there is a loss of sensitivity in determining a,. At strong coupling,
perturbation theory calculation of a; breaks down. So, at best, there
exists a window in g where reliable results can be obtained. Hasenfratz
et al. [28] claim that this is true for ;6-; in the range [6,6.3|. In this
interval their results are in agreement with their 6 = 2 MC RG results
as shown in Table 2. A high statistics calculation of large loops in
SU(2) by Gutbrod (48] shows that stability with respect to loop size
is reached rather slowly. Therefore one has to be cautious of apparent
convergence.

4.3) Results and Discussion:

For 9-‘3,- > 6.4, the two MCRG results are consistent and fall about
10% below the 2-loop value. This situation seems to persist up to 7.5.
[t is very important to determine whether even at ;9,- > 7.0 we are =
10% below the 2-loop behavior. If the observed behavior is correct,
then we should stop thinking in terms of asymptotic scaling. We need
to perform a consistency check that demonstrates that the results for
A have converged and that the MCRG method is not limited by finite
size effects.

It is hard to compare directly the results in the region of the dip
of the b = /3 study with the b = 2 ones because of the different scale
factor of the RGT. One check is to take the v/3 data and fit it to a
smooth function with the correct asymptotic behavior. This function
can then be used to determine the discrete change A3 in the couplings
for any other scale factor b. Petcher [49] has carcied out the follewing
analysis: he constrains the function by a fit to the 4 = V3 data with
matchir, on the v/3 lattice (note that our preferred values are the
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data. This analysis of D. Petcher is with old data. New results will be
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mean of the matching value on the v3 and 1 lattices). As shown in
Fig. / the smooth function he finds from the v/3 data, rescaled to
b = 2 compares well with the 6 = 2 MCRG data. Another test, which
addresses the problem of finite lattice size effects, is for us to repeat
the 9v3 calculation in the region of the dip.

Next we would like to check if the A3 calculated from MC deter-
minations of different physical observables are identical and agree with
the MC RG calculations. This comparison tests two things; 1) whether
there exists scaling (constant mass ratios) before (larger g) asymptotic
scaling and 2) whether the MC measurements are reliable. The lat-
tice value of a mass ma calculated at two values of the coupling, ﬁ-
and —,—. gives the AJ for a scale change 3 -L Unfortunately the val-
ues of couplings are not selected to give the A3 for a given constant
scale change. This again introduces the problem of rescaling data. In
Fig. 8 we only use pairs of data points with a scaie factor close to
v'3. On close scrutiny of the data between 69" = 5.9 and 6.3 one secs
two curves, the b = v3 MCRG data agrees with o while b = 2 MCRG
data is consistent with the T, data. If this dissrepancy is not due to
finite size effects or our inability to measure long distance observables,
then it implies that even scaling is violated until ;"7 ~ 6.2. We nned
more reliable data to settle this point. At ;7=6.0, the 0** glueball
mass 50| string tension o [51] and the deconfinement ternperature T.
'52) 53! represent scales of 2,5 and 8 lattice units respectively. Thus
identical AJ would be a reasonable test of scaling even though there is
the problem of rescaling data. Unfortunately, there is no point at the
moment from glueball data due to large uncontrolled finite size effects
as discussed in my lecture on glueballs.

The onset of asymptotic scaling has also been checked by plotting
T2 where m is the deconfinement temperature T. and A is the 2-loop
perturbative scale. The two groups doing this calculation (52/53! use a
different criteria to fix the transition coupling. Their results for .V,
10,12, 14 coincide when the same criterion is used by both and give an
accurate measurement of T.. However, the results show a very broad
transition region so more careful finite size studies are needed to fix the
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infinite volume transition point. In figures 9a and 9b, I show the data
for T./A with A defined both with the the 1-loop and 2-loop formula.
In both cases this ratio is roughly constant for N, = 10,12,14 and
different from the value at N, < 8. A closer inspection shows a small
consistent decrease even at N; = 14. The range of g between N; = 1C
and 14 is too small to deduce to better than 10% whether the curves
have reached their asymptotic behavior. Even so, we cannot distinguish
whether there is scaling for %) 6.15 according to 1-loop or the 2-loop
behavior. This exposes one kind of O(g?) problems. Second, there are
possible large, i.e. (1 + O(g?)), regularization scheme dependent terms
in the 2-loop A for ¢ ~ 1. Because of these uncertainties, it is not
possible to test asymptotic scaling to better than 10% by this method
yet. Thus these calculations should be used as a guide and the goal
should always be to attain constant mass-ratios.

To conclude this section: MCRG calculations have provided us
with a definitive statement on the approach to the continuum limit.
This is non-trivial. The present MC determination of ¢ and the glueball
masses need improvement before a definite statement of scaling can be
made. The largest lattice calculation of o by de Forcrand ({54] show
deviations from asymptotic scaling i.e. /@ = 92 (79) AL at ¥ = 6.0
(6.3). Since these calculations have already taxed the power of a Cray
XMP-48, it leads us to the question whether improved ac:ions can help.
This is discussed next.

3: DETERMINATION OF THE IMPROVED ACTION.

The advantage of using an improved action in MC s.mulations is
to reduce the effect of operators that lead to scaling violations. In
QCD this means that corrections to mass-ratios determined from small
lattices can be reduced. Second, we want to avoid regions near singular-
ities where universality (continuum mass-ratios) is violated. A known
rxample is the end point of the phase structure in the fundamental-
adjoint plane,
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There are at least 11 methods in existence to calculate the renor-
malized couplings. All, except for those using perturbation theory (and
therefore only valid near ¢ = 0 where scheme dependence is negligible),
are based on MCRG. In fact, since the fixed point and the Renormal-
ized trajectory is a function of the RGT, an improved action is content-
free unless the RGT is specified. I shall briefly describe the methods,
state their advantages and disadvantages and mention results obtained
with them. The generic problem of systematic errors in the estimate
of the couplings due to a truncation in the number of couplings kept
in the analysis will be referred to as “truncation errors”. This is a
serious drawback beca the errors can be very iarge and there is no
way of estimating them without a second long simulation. In order to
consider this truncated ansatz to be the best “fit”, a criterion to judge
the improvement has to be established [31]. This is discussed after a
brief description of the methods. To fix the notation, the pure gauge
SU(2) action is written as

4
S = KrpY TrUp+Kep ) TrlUsp+ Ka Y {3(TrU,)? - %}
* Ky Y _{2TrU,)* - TrU,} (5.1)

while the SU(3) action is

S = ReKp S TrUp + Kop 3 TrUsy + K ):{%(Tru,,)’ - 5TrUy)

9 , 1
“ KA (G107 -2H (5.2)
Here the higher representations have been constructed from Up, all

the traces are normalized -to unity and the sums are over all sites and
positive orientations of the loope.

5.1) Symanzik Program [588] : This is a perturbation theory
method to remove all O(a?) corrections in physical observables. At
the tree level, at 1-loop [56] and in the lcading log (57 analysis, the
((a?) correctior- are removed by including the 6-link planar loop with
strength

Kop

= 005 . 5.3
Kr (5.3)



There have been some SU(3) calculations (58] done with this action,
but they are inconclusive and no statement for an improvement in
mass-ratios can be made as of now.

5.2) Block Spin Renormalization Group (perturbation
theory): The first work in this direction is by Wilson [1] who wrote
down the ansatz (for details see [31})

Hep

= -0.0576 , —— = -0.0388
Kp

(5.4)

where Kg: is the twisted 6-link coupling. No calculation of physical
observables has been done with this action. The group of Iwasaki et al.
[59] have made a large independent effort in this direction of improve-
ment. They find that near ¢ = 0 the action after 3 RGT can be
approximated by including .he 6-link planar loop with strength

Ke 0.331
=L - =0
Kr 3.648 (5.5)

They show that fcr both the Wilson ansatz, Eq. (5.4), and for this
action instantons are stable on the lattice. Since this is not true of
the simple plaquette action, they regard it as another criterion for
improvement. They have recently calculated the string tension and
the hadron masses in the quenched approximation using the improved
gauge action of Eq. (5.5) and the standard Wilson action for the quark
propagator on a 123 x 24 lattice at an effective f,- ~ 5.9. Their results
for mass ratios are very good. We need to ascertain if these impressive
results are really due to the improved action.

5.3) Migdal-Kadanoff Recursion Technique: This calcula-
tion (60} is limited to the plaquette in the fundamental and higher
representations. The integration over links is done by expanding the
action in terms of the characters and then using the recursion formula.
In the improved action, the effect of the singularity in the fundamental-
adjoint plane is reduced but the leading irrelevant coupling K, is not

‘included. For SU(2) [60|, the convergence in the character expansion



was good, the recursion was stable on keeping 20 characters. The im-
proved action is dominated by the spin 1 and 3/2 representations, and
the K-M improved trajectory was approximated by

% = -0z (5.6)
It was later shown by Bitar et al. [61] that the heat Kernal action
works very well in the recursion scheme and in fact is the solution in
the perturbative limit. For a SU(2) calculation of the 3-function along
the K-M improved trajectory K4 = —0.24Kp, and for an analysis of
the improved action 3ee Ref. [23].

5.3b) Phenomenological (Lines Of Constant String Ten-
sion): The continuum limit is taken along directions perpendicular to
the lines of constant string tension in the negative fundamental-adjoint
plane. Rebbi et al. (62] have measured the ¢§ potential, while Samuel
'63] has promoted a calculation with scalar quarks. The effective cou-
pling for comparison on the Wilson axis is defined by using the large
N resummation technique [64] [65] . Since no direct comparison has
been made it is hard to state if better mass ratios are obtained.

5.4) Swendsen’s method {68] using the Callen represen-
tation: The block expectations values of Wilson loops are calculated
in two ways. First as simple averages over block configurations, and
second using the Callen representation (67 with 2 guess for the block
couplings. From these two estimates, the block couplings are deter-
mined iteratively. The method is fast and easy to implement. [t does
have undetermined trincation errors. Lang (68] has used this method
to show that the quartic coupling Aw* in the self-interacting scalar field
theory renormalizes to zero. Recently Lang (42| and Burkitt [43| have
used it to map the flow of the action under the b = 2 RGT (section 2.2)
for the U(1) model. From a difference in the flows they can estiinate the
transition point on the Wilson axis. It would be instructive to extend
the U(1) analysis to £+ coupling values along the phase transition line
and check if there exists a TCP.

R



5.5) Callaway-Petronzio-Wilson method [69] [70] of fixed
block spins: This method is useful for discrete spin systems like the
Ising model and models in the same universality class. A MCRG cal-
evlation is modified by fixing 2all the block spins except one such that
only a controllable few block interactions are non-zero. The system is
simulated with the RGT used as an additional weight in the Metropo-
lis algorithm. The ratio of probability of this unfixed spin being up
to it being down is equal to a determined function of a certair num-
ber (depending on how many block interactions are non-zerc) of block
couplings. By using different configuraticns of fixed block spins a sys-
tem of linear equations is set up frem which the block cov lings are
determined. The drawback of this method, even for the Ising model,
is that it is hard to set up the block spins so that only a few (= 10)
block interactions are nonzero. Wilson showed that this car be done if
one uses the lattice gas representation s.e. 0 or 1 for spin values. The
couplings in the £1 representation are then given by an expansion in
the lattice gay rouplingy. The second improvement due to Wilson is
that instead of a MC determination of the ratic of probabilities, the
exact result can be obtained in the transfer matrix formalism. In the

= 2 Ising modz!, th¢ convergence of the 1 couplings in terms of the
lattice gas couplings is slow {70]. About a 1000 lattice gas couplings
were necessary fcr an accuracy of v 10~4, Hovrever, the calculation is
non-statistical and very fast.

5.6) Character Expeceion method of Bitar [71) : [ will
describe this method with a restriction to simple plaquette actions.
The character expansion for the actionis 3,3, K,x.(Up) where x,
is the character in the rt? re,- esentation and K, is the corresponding
coupling. Similarly the Boltzm: :in {actor F, for each plaquette p can be
expanded in a character expansion Fp = Y., d,frx.(Up) where d, is the
dimension and f, the coefficient for r'* representation. The couplings
K, are given by

K, = /d(.’r,,) InFy(Uy) xr(Up) . (5.7)

The crucial step is that the ratic d. [,/ /| ran be calculated as a ratio of

-
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expectation values over block configurativi.s. From this the Boltzmann
factor Fp, and consequently K, can be determined. The method is
sensitive to the convergence of the character expansion i.e. the number
of terms in r needed to determine F, accurately. After this there are no
truncation errors in determining K,. The method grows in complexity
if larger loops are to be included in the analysis. The first results {71,for
the simple plaquette action in SU(2) are encouraging.

5.7) The Schwinger-Dyson Equation method [72] (73] : In
this method the lattice Schwinger-Dyson equations (equations of mo-
tion for expectation values of n-point functions) are used to write down
a set of inhomogeneous linear equations for the couplings. The coeffi-
cients and the inhomogeneous term are given in terms of expectation
values of n-point functions. In deriving these equations the action has
to be truncated to the subspace of couplings to be determine.. Thus
the method has truncation errors. Preliminary results fc: the abelian-
higs models and the O(3) non-linear o-model in ¢ = 2 are encouraging.

5.8) 2-Lattice MC RG method [74] [7]: The calculation steps
are the same as Wilson's 2-Lattice method to determine the S-function.
The method consists of expanding the block expectation values (with
unknown couplings) akout those from a simulation with known cou-
plings. Keeping just the linear term in the expansion gives the differ-
ence between the two sets of couplings. The main advantage is that
this comes free with the calculation of the J-function. The method
has a statistical drawback that it requires two different sirnulations so
there is no possibility of cancellation of statistical errors. Also, far
from the RT, only the first renormalized couplings can be determined
accurately. There exist extensive calculations for both the SU(2) and
the SU(3) models using the 3 RGT. The estimate for the improved
action in a 4-parameter space for SU(2) is (23]

0.03 (5.8)
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and for SU(3) is [45]

Kgp Kg Kg
26p - 004 , 22 = 012 , =8
Kr 004 %o Kr

= -0.12. (5.9)
The truncation errors are known to be large and the reliability of the
results is being tested by using the estimated improved action in the
update and repeating the calculation of the (-function and the im-
proved action [31]. The results for the ratio my++ /o with this astion
are given in my lecture on glueballs. At present it is hard to evalu-
ate the improvement because we do not have control over finite size
effects in glueball masses. A detailed comparison of the renormalized
action obtained with this method and with the microcanonical method
is made in table 3.

5.9) Microcanonical (Creutz’s Demon) Method [75) : This
method is very efficient if from a previous MCRG calculation expec-
tation values of n block Wilson loops at each of the { block levels are
determined. To determine the corresponding couplings at the {** level,
a microcanonical simulation is then done (on a same size lattice as on
which the block expectation values were calculated) with the corre-
spornding n energies fixed and with one demon per interaction. The
desired n couplings are then determined from the distribution of de-
mon energies. P. Stolorz 76| used the block expectations values for
SU(2) obtained after two applications of the +/3 RGT for a starting
184 lattice. From these he obtained the second, (I = 2), renormal-
ized action in a truncated coupling constant space (four couplings of
Eq(5.1)). The results are shown in Table 3 and compared with the first
renormalized couplings obtained from the 2-Lattice MCRG method
described above. The results show a rapid convergence of the action
to the RT consistent with the estimates given in Eqs (5.8). This is
evidence that the v/3 RGT transformation has good convergence prop-
erties after two steps. In this calculation it was easy to thermalize the
four energies. The simulation is faster than the 2-Lattice method and
has better statistical properties. Also the block couplings at all levels
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[nitial
Action Kp KA/KF Ka/g/Kp Kep/Kp
. Kr
2.50 (W) 2.57(1) -0.195(01) 0.043(01) -0.004(3)
2.06(1) -0.186(06) 0.038(03) -0.01(2)
2.75 (W) 3.16(1) -0.199(03) 0.042(02) -0.02(2)
2.82(4) -0.214(11) 0.044(06) -0.02(4)
3.00 (W) 3.69(1) -0.190(04) 0.040(02) -0.031(7)
3.47(5) -0.211(12) 0.039(04) -0.03(3)
3.25 (W) 4.12(2) -0.160(05) 0.025(03) -0.037(4)
4.00(4) -0.182(10) 0.032(06) -0.04(3)
3.50 (W) 4.71(2) -0.168(05) 0.028(03) -0.040(4)
4.40(7) -0.150(15) 0.007(06) -0.05(2)
4.35 (MK) 3.42(1) -0.211(02) 0.044(01) -0.03(1)
3.10(3) -0.235(12) 0.055(04) -0.03(3)
Table 3. Projection of the renormalized SU(2) action onto the

(Kr, Ka,K3/3, Kep| space for several starting actions. For each start-
ing action, the first row shows the couplings after one b = 3 RGT
with starting lattices of size 94 calculated by the 2-lattice method 23],
The second row shows the couplings after two RGT calculated using
the microcanonical demon method (76]. The last set, Kp = 4.35, is
with the action given by the MK trajectory Eq. (5.6).

can be determined once the block expectation values are known. The
truncation errors are the same as in the 2-Lattice methnd.

5.10) Block Diagonalization method of Miitter and
Schilling (26): This is at present the only method that attempts to
improve both the gauge and the fermion action. The main idea is that
quark propagators are calculated on blocked gauge configurations using
a blocked fermion action. The blocked fermion action is calculated as
follows: Let the starting action be the Wilson action

VMY (5.10)

where M is the interaction matrix. The lattice is now divided into
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blocks which for the v/3 RGT contain 9 sites each. The site action is
then cast into a block action

(28]

r

{1l

(5.11)

where Z is a 9 component Dirac fermion field and T is the interaction

matrix set up to.reproduce Eq. (5.10). The part of I' that corresponds

to the mass term, [',,, is diagonalized to provide the non-interacting

fermion basis vectors. For the /3 RGT, the 9 eigenvalues of ['y, are O

and 8 degenerate ones with value 9/a. Only the light mode is kept on

the blocked lattice. The interaction between the light and heavy modes
is calculated in perturbation theory and these terms are added to the

Wilson action to give the improved fermion coupling matrix for the light

mode. This is like the standard construction of effective field theories.

This fermion diagonalization is approximate. Thus lattice masses will

not a priori change by 1he scale factor b between the original and the

blocked lattice. It is therefore necessary to first check how good the
transformation is in preserving mass-ratios of the unblocked system.

The results on a twice blocked set of configurations using b = 2 are

encouraging {77] . Results of a test of preservation of mass ratios under

blocking thould be available soon for both the b = 2 and b = /3 RGT.

At this point it is worth mentioning that the following advantages were

observed in the diagonalization process for the 3 RGT in comparison

tob = 2.

(a) The separation between the light modes m ~ 0 and the heavy
modes is better i.e. 9/a versus 2/a, so the perturbative corrections
are more reliable.

(b) Rotational invariance is not broken as is in the b = 2 transforma-
tion.

(c) No closed gauge loops which manifest themselves as additional
contact terms in the fermion operators arise. This implies that
the value of the Wilson parameter r does not get modified and .
remains the same on the blocked lattice for Wilson fermions if the
exact fermion coupling matrix is derived.

(d) The blocking of gauge links is the same as defined in section 2.3.
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Discussion: There are some features of the improved action that

seem common to the various analysis done. The details will certainly
depend on the specific RGT.
(a) The leading irrelevant operator is dominated by Kgp, the 6 - link

(b)

planar Wilson loop. Thus a RGT that kills it is an improvement.
From the V'3 RGT analysis, one gets an estimate of K4/ Kp ~
K¢/Kg ~ -0.12. Thus near 56,- = 6., the phase structure in
the { Kr, K4} plane is avoided. This is necessary because in
the vicinity of the end point of the phase structure universality is
violated.

The RT for the b = 3 RGT shows significant deviations from
linearity in the region accessible to Monte Carlo. The ratios given
in Eqs. (5.8) and (5.9) are an estimate of the asymptotic behavior.
The RT out of the fixed point is local 1.e. dominated by small loops.
The Wilson axis is tangent to the strong coupling RT at the trivial
fixed point at K4 = 0. The change from the weak coupling RT
to flow close to the Wilson axis takes place in the region where
current Monte Carlo calculations have been done i1.e. between 5.7
and 6.5. This feature needs to be investigated since current mass-
ratios show a behavior that is in between strong coupling and the
expected continuum one.

It is still necessary to evaluate whether constant mass-ratios in

the quenched approximation are obtained significantly earlier with an
improved action. The results have to justify the factor of ~ 5 by which
the gauge update slows down when the above four couplings are used.
The key lies in improving the fermion sector. For dynamical quarks, the
gauge update is a small fraction of the update time. So, an investment
in improving the gauge action is justified.

6: IMPROVED MONTE CARLO RENORMALIZATION

GROUP METHOD (78]

[ shall describe the Gupta-Cordery MCRG method (IMCR() in

Pl
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some detail. In this method too, the Renormalized Hamiltonian and
the Linearized Transformation Matrix, T, are determined in some trun-
cated space of interactions. However, in this sub-space they have no
additional truncation errors i.e. the determined quantities have their
infinite component values. Second, there are no long time correlations
even on the critical surface and the block n-point correlation functions
like (S1S}) — (82)(S4) are calculable numbers. Because of these prop-
erties, the method allows a careful error analysis in the determination
of the exponents from a truncated T.

In the IMC RG method the configurations {s} are generated with
the weight

P(s!, s)e M -H (D) (6.1)

where H? is a guess for H!. Note that beth the site and block spins
are used in the update of the site spins. In analogue to Eq. (1.2), the
distribution of the block spins is given by

e~ H' () +H () ZP(Sl.S)C—"('H.H'(")- (6.2)

If H? = K, then the block spins are completely uncorrelated and the
calculatinn of the n-point functions on the block lattice is trivial.

Sh=0 (S354) = nabap (6.3)

where for the Ising model (and most other models) the integer n, is
simply a product of the number of sites times the multiplicity of the
interaction type S,. When H? # H!, then to first order

"\/5;/ = <S;S¢;>H'-H‘ (Kl - Ka)ﬂ . (6.4)

Using Eqs. (6.3,6.4), the renormalized couplings { K.} are determined
with no truncation errors

» L \Sil>
K, = K + == 6.5)
n(!
This procedure can be iterated - - use H™~' as the spin I in Fq.

(6.1) to find H™. If the irrelevant eigenvalues are small, then after two



or three repetitions of the RGT, the sequence H™ converges to the
fixed point Hamiltonian H* which is assumed to be short ranged. For
the d = 2 Ising model, the method has been shown to be extremely
stable [79] . The linearity approximation, Eq. (6.4), is under control.
An iteration process using a few thousand sweeps suffices to determine
successively improved H? up to an accuracy of O(1074). Beyond that
the errors fail as V.V and the number of interactions that have to be
included grows rapidly.

The one remaining approximation is in the use of a truncated
H™~! for the spin Hamiltonian in the update tc find H™. This is
solved formally in a straightforward manner: In Eq. (6.1) use H? as
the guess for H™. The update now involves the original spins and all
block spins up to the n'? level in the Boltzmann weight

P(s™ s"" ') ... P(s' s)e  HO+H (") (6.6)

The four Eqs. (6.2-6.5) are unchanged except that the level superscript
is replaced by n, i.e. the n'? level block-block correlation matrix is
diagonal and given by Eq. (6.3). With this modification, the H"
is calculated directly. The limitation on n is the size of the starting
lattice. The other practical limitation is the complexity of the computer
program. [ have made the following comparison in the d = 2 Ising
model '22]: H? was calculated using Eqn (6.2) and by iterating i.e.
H. + H' - H? in which case all interactions of strength > § « 10°¢
are retained in H'. The statistical accuracy in both cases is O(10%). [
find that the iterated answer is good to only 10™*. Thus the truncation
errors do conspire and get magnified. The lesson learned from the
simple case of d = 2 [sing model is that in order to get couplings
correct to one part in 10™% at n = 2, it is necessary to include all
couplings of strength = 10-% in H!,

The calculation of the T matrix proceeds exactly as in the standard
MCRG i.e. Eqs. (1.4) to (1.8). However, in the limit /¢ = H!, the
block-block correlation matrix D is diagonal and given by Eq. (6.3).
Thus it has no truncation errors, can be inverted with impunity and
the final elements of T are free of all truncation errors. This is the key



feature of IMCRG. The orly error comes from finding the eigenvalues
from a truncated T matrix. These errors can be estimated and the
results improved perturbatively as explained in section 6.1.

In addition to the advantages mentioned above, simulating with
IMCRG, the system does not have critical slowing down. The cor-
relation length £ can always be nmade of O(1), so finite size effects
are dominated by the range of interactions, which by assumption of a
short range H* fall off exponentially. Thus, critical phenomenon can
be studied on small lattices with no hidden sweep to sweep correlations
that invalidate the statistical accuracy of the results. Using H as the
known nearest-neighbor critical point K:, = 0.4406868, I find that the
IMCRQG results [79] for H! are independent (within the statistical ac-
curacy = 10~%) of finite size effects for lattice sizes 16, 32, 64 and 128,
Again, only those couplings that fit into a 3 x 3 square were inciuded.

A technical point. When H? = H!, the block spin configurations
are such that all values of the field variable become equally likely. For
Ising like systems this poses no problems because near criticality all
discrete values are equally likely. For non-abelian gauge theories, the
important configurations in the continuum limit are fluctuations about
the identity. Thus IMC RG will be ineficient. This can be fixed by
adding an integrable factor in addition to H? in eqn. (6.1) that restricts
the block variable to near the identity. What this factor is has to be
worked out depending on the model.

IMCRG is in practice very similar to MC RG though a little more
complicated because it requires a simultaneous calculation of a many
term H (s) and H? at update. However, conceptually it is very different
and powerful.

6.1: Truncation Errors In The LT M

Consider the matrix equation {or T in block form

(Dn D\:><Tn Tn) (Un ”n) (6.7)
D3y D Ty Ty Un U



where Dy, and U';; are the 2 derivative matrices calculated in some
truncated space of operators that are considered dominant. The ele-
ments of the sub-matrix T}, will have no truncation errors provided we
can calculate

T = Dal {U“ - DnTgl} . (6.8)

In the /IMC RG method the matrix D is diagonal and known, so D,;
is 0. Thus elements of T,; determined from U,; have no truncation
errors. The errors in the eigenvalues and eigenvectors arise solely from
diagonalizing T;; rather than the full matrix T. Calculations in the
d = 2 Ising model have shown that these errors are large (of order
10%), and the convergence is not systematic i.e. the result fluctuates
about 2. This may be because all operators of a given range are not
included. An open problem therefore is a robust criterion for classifying
operators into sets such that including successive sets decreases the
truncation error geometrically by a large factor.

The errors arising from using a sub-matrix T,; can be reduced
significantly by diagonalizing

Ty + T'TiaTay = D' Uy + {(=D;'Di3 + T'Tia} Ta

(6.9)
as shown by Shankar, Gupta and Murthy (80| . The correction term
T{‘,'T,;Tg, is the 2" order perturbative result. [t is valid for all eigen-
values that are large compared to those of T;2. The matrix T,;T;,
is 1pproximately equal to (T?);; — (T1;)? and can be calculated ap-
proximately in IMCRG. The errors which [ have ignored are due to
the RG flow, i.e. T? is evaluated at a different point than T. These
eriors depend on how close to H* the calculation is done. For the
d = 2 Ising model [ find that the perturbative correction significantly
decreases trurcation errors in the relevant eigenvalues 122]|. Second,
when multilevel IMCRG is used, Eq. (6.6), the exponents have much
stnaller fluctuations at earlier levels and are close in value to those
from MCRG. So MCRG results (~btained with with far less effort)
are of the same quality as / MC RG with the perturbative improvement.
Another thing we have learned from this study is that ‘he difference
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between the calculated eigenvalue at n =1 (1.97 £ .01) and the exact
result, 2, does not seem to be due to truncation errors or statistics. The
reason is that with the same subset of operators one gets the correct
exponent after one blocking. Thus the deviation is most likely due to
irrelevant operators causing corrections to scaling.

In standard MCRG, the calculations with T = Dl',lU“ have
shown good convergence once few operators, O(5 — 10}, are included.
The reason for this is an approximate cancellation between the two
types of truncation errors. To show this use Eq. (6.7), ignore terms
with T;; and approximate T, by Dl"llU“. Then the correction term
in eqn. (6.9) is

~D{'D\3 + T'Tia ~ ~D{'Dia + U3'Uia

In most calculations, the derivative matrices are roughly proportional,
t.e. U ~ A\¢D with corrections that fall off as the ratio of non-leading
eigenvalues to the leading one A;. This statement can be checked by
expanding operators in term of eigenoperators. Thus Swendsen? by
calculating just Dl‘ll U,1 and ignoring all truncation problems was in
effect canceling a large part of the truncation error (2" term in Eq.
(6.9)) against the error arising from diagonalizing a truncated matrix
(perturbative correction, 3"¢ term in Eq. (6.9)). This explains the suc-
cess of his method. Shankar (81| has found a correction term to further
decrease the truncation effects in MCRG. Given the assumptions, the
flow under a RG and the success of the procedure as it exists, an im-
provement may be hard to evaluate. However, the check needs to be
made for the d = 3 [sing model.

To summarize, the best way to get accurate results is to use
IMCRG to calculate the renormalized couplings and Swendsen's
MC RG method to calculate the eigenvalues.

Let me also summarize some of the other resuits obtained from
the study of the d = 2 Ising model and the open probiems.

‘1] In models examined so far we can arrange T to look like

(’: g) (6.10)
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with 4 the minimal truncated n x n block matrix that sho_'d be
calculated. The case - = O is simple; there are no truncation er-
rors in either MCRG or IMCRG and diagonalizing A gives the
n largest eigenvalues. Otherwise, the truncation error depends on
the dot product of terms in £ and B. From a study of the d = 2
Ising model we know that the T matrix has elements that grow
along rows and fall along columns 80|. An estimate of the rate of
growth in the elements along the rows of the T matrix is given by
the elemments of the leading left eigenvector. For two spin interac-
tions in the d = 2 I[sing model, these grow like z3/4. Therefore, a
priori, the matrix T is badly behaved. Furthermore, the require-
ment of absolute convergence in the dot product of elements in ¢
and B only guarantees that this product is finite but it may be
arbitrarily large 1.e. O(1). The reason one gets sensible results is
because the elements along the columns are observed to fall off
faster (presumably exponentially). So, for each model a careful
study of the signs and magnitude of the elements in ¢ as a func-
tion of the RGT is necessary. This should also give a handle on
the generation of long range interactions with bad RGT. So we

need to develop a theory for how the elements along the columns
fall-off.

The non-leading eigenvalues are not very accurately determined in
either method. The matrix T starts developing complex eigenval-
ues after = 8 operators are included.

The results for H™ using /MC RG converged up to an accuracy
of a few parts in 10™* provided the couplings in H7? were correct
to O(1073). This initial accuracy can be achieved (79" with a few
thousand sweeps on a 1287 lattice.

The statistical errors in [MCRGC can be evaluated very reliably
'79|. Detailed binning analysis showed that each sweep i3 approx-
imately independent and an accuracy of 10™*% is obtained in all
couplings with ~ 2 - 10% swecps on a 64% lattice. This could be
achieved with 3000 Vax 11. 780 hours. In MCRG, we find that the
errors 1n the leading eigenvalue show no critical slowing down. [n



fact they are smaller than in IMCRG. Thus there is a remarkable
cancellation of errors in the construction of T from U and D.
'5] A reliable classification scheme for interactions into complete sets
is needed so that we have control over truncation errors.
6] A quantitative understanding of the tuning of the RGT is lacking.
To conclude, I believe that MCRG and IMCRG provide a com-
plete framework to analyze the critical behavior of spin and gauge mod-
els. With the increased availability of supercomputer time we shall have
very accurate and reliable results.

7: RENORMALIZATION GROUP INSPIRED
MULTIGRID UPDATE

A multigrid update algorithm is aimed at overcoming critical slow-
ing down in lattice gauge theories and critical phenomenon. The
method described here uses the critical 2-dimensional Ising model as a
test case. Once it is shown to work, the next model to try is the O(3)
non-linear sigma model in 2-dimensions. This model has many features
in common with non-abelian gauge theories for which we desperately
need an efficient update algorithm.

For a mutigrid cycle to work, there are three essential ingredients.
i iist them and a proposed solution.

1' Fine to coarse grid operator P: This operator should preserve the
long distance, slowly varying part of the field distribution. The

solution is a renormalization group block spin transformation. et
this be defined as

P(s,s) = e -1

where ) s is the block average of spins in the block cell and the s’
can be restricted to have unit norm like s. The strength A is a {ree
parameter and needs to be determined by numerical optimization.
For moet models, unlike a gaussian model, the couplings on the
blocked lattice are not known a priori. The success of any multigrid
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algorithm will depend on our ability to calculate a simple truncated
action that preserves physics at many length scales simultaneously.

The Hamiltonian on the coarse lattice H'(s’): In principal the
blocked Hamiltonian includes al! possible couplings. However if
the fixed point is local, then these couplings fall off exponentially
(essential assumption of the renormalization group). The precise
form of the H' depends on P. If we restrict ourselves to preserving
only one correlation length (which we will clioose to be the largest
one), then we can work with a much simpler action, the nearest
neighbor action with temperature as the single coupling. To find
the sequence of H, we can use Wilson's 2-lattice method (which
preserves a single correlation length) or use scaling. Let me ignore
scaling violations and assume that the temperature is the relevant
field. Then (t? — t¢) = b& (t! — t¢) gives the relation between
the coupiings on two successive lattices. The restriction, if we
use perturbation theory, is that the coarsest lattice coupling has
to lie in the weak coupling region where scaling holds. The ideal
situation is to know the sequence of H along the renormalized
trajectory. However, in this case the correct mass-ratios are given
on the coarsest lattice and multigrid is not needed. One could
improve the scaling behavior by using a ttuncated approximation
to the RT. This will allow more than one correlation length to be
held fixed. Such an approximate renormalized trajectory has been
worked out for gauge theories (see section §, especially eqns. 5.8
and 5.9}, the O(3) model by Shenker and Tobochnik (3! and in more
detail by A. Hasenfratz and A. Margaritis ;82| , etc. Again, the
vouplings along this trajectory at two successive points differing by
one biock transformation can be calculated by Wilson's 2-lattice
method for the 3 function.

The coarse to fine grid inverse operator R: This is the crucial
step in the algorithm. Given a configuration on the coarse lattice,
we would like to generate the spins on the next finer level which
preserve the longest correlation length. The solution is to generate



spins on the tine grid with the probability weight
R(S’.s) = e—:f’l_;“ . eHi'a:)

where H(s) the Hamiltonian (or 2ction) on the fine lattice and
calculated as described avove. Said another way, given a distri-
bution of spins {s'}, the iew fine spins are generated according
to R. Even if the initial {s} are random, thermalization will be
fast since R forces strong correlation with {s'}. To guarantse that
the distribution of spirs on ih. fine lattice are distributed accord-
ing to H(s), a certain number of standard updates should be done.

Here I anticipate using fourier acceleration to improve convergence.

For Ising like systems (few discrete states) a heat bath algorithm

car be written for K. F-r otherz one can use either heat-bath or

Metropolis depending on the ease in implementation.

One method for generating independent configurations is as fol-
lows: Thermalize on the coarsest lattice L™ and then use R to generate
configurations on L"~!. Now, d> a few sweeps to equilibrate the high
frequencies on L™~! since all correl~tion lenghts are not preserved by
the interpolation. Repeat this pr..cess recursively until the finest scale
18 reached. To generate the next decorrelated !attize. start again on
the coarsest scale with an independent lattice. The method is useful
if at each level n the number of smoothing sweeps necessary to pro-
duce the correct distribution do not grow as £2. This is because the
auto-correlation length for standard update algorithm grows roughly
as &3

If H™ were chosen along the exact renormalized trajectory, then
none of the above would be necessary. Calculation of the physics on
the coarsest grid would give the continuum mass-ratios. What we are
proposing is to use simple local actions at all levels and preserve only
the largest correlation length. The final smoo*hing sweeps on the finest
grid then give the correct distribution.

This method deviates from standard muligrid used, for example,
n solving differential equations which have a unique solution. In that
case it 18 the error vector. which has long range correlations. that s



processed on increasingly coarse grids and the corrections are boosted
to correct the iterate at the next fine level. In update, we want to gen-
erate statistically independent configurations, so the method proceeds
from coarse to fine grid alone and then starts all over again. We don't
want to transfer long wavelength information from fine to coarse grid.

For the matrix inversion problem in Lattice gauge theories, the
standard V cycle [20| can be used. However, one has to determine
the Wilson (or Staggered) action on the block lattice derived for the
particular block spin transformation used to project the gauge fields.
Also, the coarse to fine grid interpolating operator has to be constructed
carefully to preserve the long wavelength properties of the background
gauge fields. A step in this direction is the “block diagonalization”
scheme of Mitter and Schilling [26].

8: MEASURING AUTO-CORRELATIONS

The method we propose is to use block operators. The process of
blocking explicitly gets rid of the high frequency components. After a
sufficient number of blocking steps, the long correlations are discernable
by eye in a Monte Carlo time history of simple observables ~ Wilson
loops. In figure 10, we [83] show the plaquette as a function of the
sweep number on a sequence of blocked lattices 8v/3 — 9 — 33 —
3 — /3 — 1at g = 6.75 for our 20 hit Metropolis algorithm. Note, it is
only on lattices 3 or smaller (6x 6 renormalized loops) that one begins
to see the long auto-correlation. Methods like binning or measuring
auto-correlation coefficients on the original lattice would have failed to
expose the auto-correlation length of =~ 500 from a measurement of
6 x 6 unblocked loops over 5000 sweeps. The MCRG method is also
faster than measuring large unrenormalized loops because blocking and
measuring the plaquette are trivially vectorized. Lastly, the method
highlights the amount of ultra-violet contamination that existsin lattice
Teasurements,
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Fig. 10: Demonstration of auto-correlations using block loops. a) Pla-
quette on (9v/3)* lattice shows random behavior. b) Blocked plaquette
(BP) on 94 lattice shows random behavior. ¢) Twice BP on (3v/3)* lat-
tice shows almost random behavior. d) Thrice BP on 34 lattice starts
to show correlations. e) Four times BP on (v/3)* lattice shows correla-

tions. f) Five times BP on 14 lattice shows an auto-correlation length
of =3 500.
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9: EFFECTIVE FIELD THEORIES

The point of effective field theories is that physical phenomena at
some given length scale can be described by some effective/composite
degrees of freedom. The couplings between these variables are deter-
mined by the underlying microscopic theory. Thus we would like to
know these effective degrees of freedom and the corresponding cou-
plings. So far the discussion of MCR 5 has focused on the change of
scale without a change of variables. To make full use of its power, a
transformation of variables at the appropriate scale should be added
t.e. in addition to a RGT that just averages over degrees of freedom,
consider a change from the microscopic theory to an effective theory
with new variables at some give length scale. These variables can be
composite (as is the case in going from QCD to a theory where the
degrees of freedom are hadrons) or represent a freezing as in SU(2) at
high temperatures where the interaction between the Wilson lines is
described by an effective d = 3 Ising model. Here one transforms from
link variables to Wilson lines to Ising spins.

Once the effective theory has been constructed, it is important to
know the universality class to which it belongs. This would provide a
detailed knowledge of the critical/long distance behavior. Little work
has been done in actually exploring universality classes by mapping
flows that incorporate a change of variables.

The way to do this in standard MC is to define the composite de-
grees of freedom and their n-point functions in terms of the microscopic
variables. From the expectation values of these n-point correlation
functions calculated as simple averages, the corresponding couplings
can then be determined by a Microcannonical simulation as described
in section 5.9. One such calculation is by Ogilvie and Gocksch 84|
in which they determine the nearest neighbor couplings between the
Wilson lines in SU(2).

In MCRG, the transformation from the microscopic degrees of
freedom to the composite variables is made on the original lattice (same
as in MC). The RGT is defined on the composite variables and the

5.53



critical exponents of the effective theory are calculated from the LT M.
The couplings can be determined by one or more of the methods of
section 5, but keep in mind that these methods have truncation errors.
The optimum way to determine the effective couplings is IMC RG with
H? a guessed Hamiltonian for the effective theory. This process maps
the universality class of the moc.l.

One of the goals of this approach is to fix the parameters of the
effective chiral lagrangian.
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